Assignment title: Information


49928: Design Optimisation and Manufacturing Question 1 and Question 3 are selected. Solution to Question 1 Mathematical model: The variables are defined as ….. The objective function is … because … The constraints are … because… So the mathematical model of the problem is … Graphical solution: By using MATLAB code Question 1.m, the following graph can be obtained. In the graph, the black lines are …. The red line is … the green line is …. The optimal solution is around red circle. Its values are …. The objective function value is … The constraints values are … so all the constraints are satisfied. Changing the parameter: I have decided to change the profit of the table from $20 each into $18 each. The following is the new model and the new solution…. Discussions. When the profit of table is reduced, … Solution to Question 3 Similar to that for Question 1…… MATLAB code for Question 1: % Student name, student ID % Question 1 for Assignment 1 % Some changes made for improving user interface % (1) The font size is enlarged – see Line ?? 'fontsize',12 % (2) The line width is enlarged – see Line ?? 'linewidth',2 % Mathematical model: % minimize f: 12*x1+2*x2 % subject to h: 2*x1 – 3* x2/4 <=10 % g: 2*x1-x2<=0 % 6<=x1<=9; 5<=x2<=20; close all clear % function []=ex1_3(x3) % Example 1.3 in the text book, P15 x3=5; s=20; x1L=0; x1U=15; s1=(x1U-x1L)/s; % set the step x2L=0; x2U=10; s2=(x2U-x2L)/s; [x1,x2]=meshgrid(x1L:s1:x1U,x2L:s2:x2U); % transforms the domain specified by vectors x and y into arrays X and Y f=18*55*x1+18*50*x2+21*50*x3; % ******* Objective function [C,H]=contour(x1,x2,f,'k'); % compute a single contour at the level v clabel(C,H); hold on; grid on; axis ([x1L x1U x2L x2U]) xlabel('x1','fontsize',12); ylabel('x2','fontsize',12); title('Objective function - Press ANY key to continue','fontweight','bold','fontsize',12); pause; g1=400000*x1+600000*x2+700000*x3; % ******* inequality constraint 1 [Cg1,Hg1]=contour(x1,x2,g1,[12000000,12000000],'r'); clabel(Cg1,Hg1,'fontweight','bold'); set(Hg1,'linewidth',2); title('Constraint g1 - Press ANY key to continue','fontweight','bold','fontsize',12); pause; g2=3*x1-x2+x3; % ******* inequality constraint 2 [Cg2,Hg2]=contour(x1,x2,g2,[30,30],'g'); clabel(Cg2,Hg2); set(Hg2,'linewidth',2); title('Constraint g2 - Press ANY key to continue','fontweight','bold','fontsize',12); pause; g3=3*x1+6*x2+6*x3; % ******* inequality constraint 3 [Cg3,Hg3]=contour(x1,x2,g3,[100,100],'m'); clabel(Cg3,Hg3); set(Hg3,'linewidth',2); title('Constraint g3 - Press ANY key to continue','fontweight','bold','fontsize',12); pause; % find the optimal solution title('Point mouse to optimal solution','fontweight','bold','fontsize',12); [x1o,x2o]=ginput(1); plot(x1o,x2o,'r+','markersize',20); plot(x1o,x2o,'ro','markersize',10,'linewidth',3); fo=18*55*x1o+18*50*x2o+21*50*x3; g1o=400000*x1o+600000*x2o+700000*x3; g2o=3*x1o-x2o+x3; g3o=3*x1o+6*x2o+6*x3; if ~(g1o>12000000 | g2o>30 | g3o>100), title(sprintf('x1o=%-4.2f x2o=%-4.2f fo=%-4.2f',x1o,x2o,fo),'fontweight','bold','fontsize',12); else title('Constraint failed','fontweight','bold','fontsize',12); end; MATLAB code for Question 3: % Student name, student ID % Question 3 for Assignment 1 % Some changes made for improving user interface % (1) The font size is enlarged – see Line ?? 'fontsize',12 % (2) The line width is enlarged – see Line ?? 'linewidth',2 % % Mathematical model: % minimize f:C*pi*x1*x2 % subject to h:pi*x1^2*x2/4-500=0 % g:2*x1-x2<=0 % 6<=x1<=9; 5<=x2<=20; %change these parameters as desired close all % close all the open figure windows clear all % removes all variables, globals and functions from memory step=0.1; % set the step size Co=1/10000; % cost parameter: 1 dollar per cm^2 x1L=6; x1U=9; % side constraints of d (x1) and h (x2) x2L=5; x2U=20; % h [x1,x2]=meshgrid(x1L:step:x1U,x2L:step:x2U); % transforms the domain specified by vectors % x and y into arrays X and Y that can be used for the evaluation % of functions of two variables and 3-D surface plots. % The rows of the output array X are copies of the vector x and % the columns of the output array Y are copies of the vector y f=Co*pi*x1.*x2; % Objective function h=pi*x1.^2.*x2/4-500; % Equality constraint g=2*x1-x2; % inequality constraint figure('numbertitle','off','name','Ex1_1'); % display the figure name [C,H]=contour(x1,x2,f,'color','k'); % plot the contour of the objective function % returns contour matrix C as described in % CONTOURC and a handle H to a contourgroup object. This handle can % be used as input to CLABEL clabel(C,H); % adds height labels to the current contour plot hold on; grid on; % keep the setting of the current plot xlabel('x1','fontsize',12); ylabel('x2','fontsize',12); title('Objective function - Press ANY key to continue','fontweight','bold','fontsize',12); pause; % equality constraint [Ch,Hh]=contour(x1,x2,h,[0,0],'y'); clabel(Ch,Hh); set(Hh,'linewidth',6); % set the value of specified property for the graphics object with handle H title('Equality constraint - Press ANY key to continue','fontweight','bold','fontsize',12); pause; % inequality constraint [Cg,Hg]=contour(x1,x2,g,[0,0],'b'); clabel(Cg,Hg); set(Hg,'linewidth',4); title('Inequality constraint - Press ANY key to continue','fontweight','bold','fontsize',12); pause; % pick the optimal solution title('Point mouse to optimal solution','fontweight','bold','fontsize',12); [x1o,x2o]=ginput(1); plot(x1o,x2o,'r+','markersize',20); % plot vector y versus vector x plot(x1o,x2o,'ro','markersize',10,'linewidth',3); fo=Co*pi*x1o*x2o; ho=pi*x1o.^2.*x2o/4-500; go=2*x1o-x2o; if abs(ho)<10 & go<0 title(sprintf('x1o=%-4.2f x2o=%-4.2f fo=%-4.5f',x1o,x2o,fo),'fontweight','bold','fontsize',12); else title('Constraint failed','fontweight','bold','fontsize',12); end;