OENG1116  Modelling  and  Simulation   OENG1118  Sustainable  Engineering  Practice  &  Design   Project  M:  Mixing  Analysis  of  Primary  Wastewater  Digester   Note:  This  is  a  shared  Project  between  OENG1116  and  OENG1118.  Many  of  the  assessments  will  be   shared  between  OENG1116  and  OENG1118  in  that  for  a  given  assessment  you  will  need  to  prepare   one  piece  of  work  (e.g.  Group  Proposal  Report,  Group  Project  Report)  that  covers  the  requirements   of  both  OENG1116  and  OENG1118.  Marking  of  these  assessments  shall  be  performed  separately  for   each  course,  but  your  group’s  overall  recommendations  take  into  account  findings  from  both  the   Modelling  and  Simulation  and  Sustainability  Assessment  aspects  of  the  project.  BLUE  text  below   indicates  tasks  that  shall  be  assessed  by  OENG1116  only,  RED  text  below  indicates  tasks  that  shall  be   assessed  by  OENG1118  only,  and  BLACK  text  indicates  tasks  that  shall  be  assessed  by  both  courses.     1.0  Project  Task/Outline   With  increasing  population  density   and  demands  on  water  resources  in  general,  water  and   wastewater  treatment  play  an  increasingly  pivotal  role  in  modern  society.  At  the  Western  Treatment   Plant,  the  primary  digester  acts  to  digest  suspended  solids  and  biomass  into  inert  materials  and   methane  for  on-­‐site  power  generation  that  may  be  used  by  the  plant  or  sold  back  to  the  grid.  It  has   been  recognized  that  the  efficiency  of  the  complex  chain  of  biochemical  digestion  reactions  within   the  digester  are  heavily  impacted  by  the  mixing  conditions  within  the  digester.  It  is  suspected  that   the  current  mixing  conditions  in   the  primary  digester  at  the  Western  Treatment  Plant  are   suboptimal,  and  may  be  attributed  to  the  highly  viscous  nature  of  the  activated  sludge  that  arises   from  the  high  biomass  content.  As  such,  whilst  it  has  been  recognized  that  the  primary  digester   could  benefit  from  improved  mixing  conditions,  conventional  approaches  to  accelerate  fluid  mixing   such  as  gas  spargers  or  mixing  impellers  are  not  appropriate  for  this  application.   Your  Engineering  Team  has  been  charged  with  the  task  of  assessing  the  current  mixing  conditions   within  the  primary  digester  and  develop  and  assess  alternate  mixing  approaches  under  laminar  flow   conditions   such  as   the  use  of  internal  baffles  and/or  steady  or  transient  fluid  extraction  and   reinjection,  the  outcomes  of  which  will  be  communicated  to  the  client  via  a  professional  engineering   report  which  outlines  the  project  recommendations  and  feasibility.     Your  Engineering  Team  based  within  a  professional  engineering  firm  is  interested  in  undertaking  this   assessment  project  that  is  comprised  of  the  following  tasks:     • Develop  a  computational  fluid  dynamics  (CFD)  model  of  the  flow  conditions  within  the  primary   digester  under  the  different  mixing  approaches  and  develop  a  measure  of  the  mixing  efficiency   across  these  cases   • Estimate  the  energy  consumption  of  the  alternate  approaches  and  develop  recommendations   based  upon  the  offset  between  mixing  and  energy  efficiency.   • Conduct  a  preliminary  sustainability  assessment  to  quantify  and  qualify  impacts  of  the  solution   on  the  economy,  environment,  and  society   • Conduct  a  multi-­‐criteria  analysis  to  decide  on  an  optimal  variant  of  the  solution   • Make  and  justify  recommendations  as  to  whether  the  project  should  proceed  based  on  the   outcomes  of  the  tasks  above   This  information  will  allow  the  benefits  of  the  project  to  be  estimated  and  the  overall  feasibility  of   the  project  to  be  gauged.  As  detailed  in  the  assessment  descriptions  for  OENG1116  and  OENG1118,   your  Engineering  Team  will  first  develop  a  proposal  that  will  act  as  a  competitive  bid  for  this   assessment  project.  Assuming  that  this  bid  is  successful,  your  Engineering  Team  will  then  undertake   the  assessment  project  itself.  The  assessment  project  tasks  are  outlined  in  detail  as  follows:   2.0  Typical  design  questions  –Mixing  Analysis   1. Find  or  estimate  details  of  the  primary  digester  at  the  Western  Treatment  Plant,  including     a. Digester  dimensions  and  geometry   b. Input  flow  rate   c. Digester  fluid  rheology   2. Using  a  suitable  software  package  develop  a  two-­‐dimensional  (2D)  preliminary  CFD  model  of   the  existing  primary  digester  at  the  Western  Treatment  Plant   a. Verify  model  through  convergence  testing  of  mesh  and  time-­‐stepping   b. Solve  steady-­‐state  flow  in  digester   c. Develop  measure  of  mixing  efficiency  of  digester  and  solve  steady-­‐state  mixing   efficiency   3. From  2D  model  above,  identify  regions  of  poor  mixing  in  the  primary  digester  and  suggest   potential  interventions  to  improve  mixing  efficiency,  such  as   a. Internal  baffles  and  mixing  elements   b. Judicious  extraction  and  re-­‐injection  of  fluid   4.  Model  digester  flow  and  mixing  over  several  different  mixing  protocols  and  measure   a. Mixing  efficiency  and  robustness   b. Energy  consumption   5. Develop  recommendations  for  improvement  of  the  mixing  efficiency  in  the  primary  digester   and  feasibility.  Comment  on  shortcomings  of  model  and  scope  for  improvement.       3.0  Typical  design  questions  –  Sustainability  Assessment   Environment   For  all  products  in  the  scenarios:   1. Formulate  a  single  functional  unit.   2. Determine  a  single  system  boundary.   For  the  products  in  each  scenario:   3. Identify  the  major  material-­‐  and  energy-­‐conversion  processes  across  the  product  life  cycle.   4. Determine  the  major  material  and  energy  flows.   5. Draw  a  process  flow  diagram  that  includes:   5.1. processes   5.2. elementary  flows  of  materials  and  energy   5.3. intermediate  flows  of  materials  and  energy   6. Calculate  the  largest  environmental  impacts.   7. Calculate  the  sensitivity  of  parameters  with  high  contributions  and  high  uncertainty,  and  of   assumptions.   Economy   For  the  solution  in  each  scenario:   1. Identify  sources  of  cost  and  revenue  across  the  product  life  cycle.   2. Determine  the  economic  costs  and  revenues.   3. Determine  the  useful  life  of  the  product.   4. Calculate  the  payback  period  and  net  present  value  of  the  product.   Society   For  the  solution  in  each  scenario:   1. Identify  the  societal  impacts  from  the  project  (both  positive  and  negative  impacts).   Multi-­‐criteria  decision  analysis   1. Identify  a  variety  of  criteria  or  objectives  with  justifications  for  multi-­‐criteria  analysis.   2. Determine  the  appropriate  weightings  for  each  criterion/objective  with  justifications.   3. Determine  the  measure  of  the  effectiveness  of  the  project/alternative.     4.0  Useful  resources   Software  tools   1. Fluid  dynamics  software:     • ANSYS-­‐CFX   2.  Modelling  equations  and  theoretical  underpinnings   Discuss  the  governing  equations  that  will  be  solved  and  their  theoretical  underpinnings.  Identify   and  discuss  assumptions  involved  and  their  validity.   3.  Numerical  techniques  and  software  packages   Discuss  the  numerical  techniques  you  will  employ  to  solve  the  governing  equations  and  the   software  package  used.  Discuss  issues  regarding  accuracy  and  stability  of  numerical  solutions.   Identify  possible  ways  to  cross-­‐validate  numerical  predictions