Entropy 2013, 15,2218-2245;doi:10.3390/e15062218
OPENACCESS
entropy
ISSN1099-4300
www.mdpi.com/journal/entropy
Article
VesselPatternKnowledgeDiscoveryfromAISData:A
FrameworkforAnomalyDetectionandRoutePrediction
GiulianaPallotta*,MicheleVespeandKarnaBryan
NATOScienceandTechnologyOrganization(STO),CentreforMaritimeResearchand
Experimentation(CMRE),VialeSanBartolomeo400,19126,LaSpezia,Italy;
E-Mails:[email protected](M.V.);[email protected](K.B.)
* Authortowhomcorrespondenceshouldbeaddressed;E-Mail:[email protected];
Tel.:+39-0187-527-349;Fax:+39-0187-527-354.
Received:1March2013;inrevisedform:10May2013/Accepted:29May2013/
Published:4June2013
Abstract: UnderstandingmaritimetrafficpatternsiskeytoMaritimeSituationalAwareness
applications,inparticular,toclassifyandpredictactivities.Facilitatedbytherecent
build-upofterrestrialnetworksandsatelliteconstellationsofAutomaticIdentification
System(AIS)receivers,shipmovementinformationisbecomingincreasinglyavailable,
bothincoastalareasandopenwaters.Theresultingamountofinformationisincreasingly
overwhelmingtohumanoperators,requiringtheaidofautomaticprocessingtosynthesize
thebehaviorsofinterestinaclearandeffectiveway.AlthoughAISdataareonlylegally
requiredforlargervessels,theiruseisgrowing,andtheycanbeeffectivelyusedto
inferdifferentlevelsofcontextualinformation,fromthecharacterizationofportsand
off-shoreplatformstospatialandtemporaldistributionsofroutes.Anunsupervisedand
incrementallearningapproachtotheextractionofmaritimemovementpatternsispresented
heretoconvertfromrawdatatoinformationsupportingdecisions.Thisisabasisfor
automaticallydetectinganomaliesandprojectingcurrenttrajectoriesandpatternsintothe
future.Theproposedmethodology,calledTREAD(TrafficRouteExtractionandAnomaly
Detection)wasdevelopedfordifferentlevelsofintermittency(i.e.,sensorcoverageand
performance),persistence(i.e.,timelagbetweensubsequentobservations)anddatasources
(i.e.,ground-basedandspace-basedreceivers).
Keywords: maritimesituationalawareness;knowledgediscovery;maritimeroute
extraction;routeprediction;anomalydetectionEntropy 2013, 15 2219
1.Introduction
Maritimetransportationrepresentsapproximately90%ofglobaltradebyvolume,placingsafety
andsecuritychallengesasahighpriorityfornationsacrosstheglobe.Maritimesurveillancedataare
collectedatdifferentscalesandareincreasinglyusedtoachievehigherlevelsofsituationalawareness.
AutomaticIdentificationSystem(AIS)technologyprovidesavastamountofnear-realtime
information,callingforaneverincreasingdegreeofautomationintransformingdataintomeaningful
informationtosupportoperationaldecisionmakers.Asanexample,theCentreforMaritimeResearch
andExperimentation(CMRE)iscurrentlyreceivinganaveragerateof600MillionAISmessagesper
monthfrommultiplesources,andtherateisincreasing[1].AISisaself-reportingmessagingsystem
originallyconceivedforcollisionavoidance(AISismandatoryforshipsof300grosstonnageand
upwardsininternationalvoyages,500andupwardsforcargoesnotininternationalwatersandpassenger
vessels[2].Inaddition,fishingvesselsgreaterthan15msailinginwaterunderthejurisdictionof
theEuropeanUnionMemberStatesshallalsoberequiredtobefittedwithAIS[3].)tobroadcast
informationontheirlocation(positional,identificationandotherinformation)atavariablerefresh
rate,whichdependsontheirmotion(vesselsatanchortransmittheirpositioneverytwominutesand
increasethebroadcastrateuptotwosecondswhenmaneuveringorsailingathighspeed;everyfive
minutes,vesselstransmitotherdata(staticandvoyagerelatedinformation)containingidentifiers,such
asInternationalMaritimeOrganization(IMO)number,callsign,shipnameandMaritimeMobileService
Identity(MMSI),usedasaprimarykeytolinkthemessagetopositioninformation.Staticinformation
alsoincludessize,typeofvesselandcargo,whereasvoyagerelateddata,suchasEstimatedTimeof
Arrival(ETA)anddestination,aremanuallysetandnotfullyreliable[4].)Overthelastseveralyears,the
AISdatareceivedbyshipsandcoastalstationshavebeentransmittedtoregionalornationaldatacenters.
Whenmultiplereceiversareconnectedintonetworks,certainchallengesarisewithdataintermittency,
resolvingdataredundancyreceivedbymultiplereceivers,correctingerrorsintimestampsassignedby
varyingreceiversandidentifyingtracksofvesselsthaterroneouslysharethemessageidentifier.This
levelofpre-processingisnecessarytoextractmaritimemotionpatterns,especiallyataglobalscale.
ReceivingAISmessagesfromspace[5]isbecomingincreasinglycommonplace.Asopposedto
terrestrialnetworksofAISreceivers,whoseperformanceischaracterizedbyhighpersistence,butlimited
coverage,satellite-basedsystemscanpickupmessagesintheopensea,farawayfromthecoastline.
Space-basedreceiverstendtobemountedonLowEarthOrbit(LEO)satellites,sotheAIScoverage
isglobalattheexpenseofpersistence,duetotheorbitingplatformrevisittime.Itisclearthatwhen
integratingsuchsystemswithdatareceivedbyterrestrialreceivers,thereareadditionalissuestoresolve
withvariablefrequencyupdate,coverageandpersistence.
Inthiswork,amethodologyispresentedthataimstoconvertthelargeamountofAISdatainto
decisionsupportelements,independentlyofthenumberofreceivers,theirperformance,theplatform
oforiginandthescaleoftheareaofinterest.Theknowledgeisextractedviaanincremental
learningapproach,inordertodynamicallyadapttoevolvingsituations(e.g.,maritimeseasonalpatterns,
operationalconditionsorchangingroutingschemes).Thisallowsmaritimetraffictobecharacterized
followingafullyunsupervisedlearningstrategywithno apriori informationneeded(i.e.,usingonly
rawAISdata).Entropy 2013, 15 2220
Theproposed trafficrouteextraction methodologycanbeusedtoprovideup-to-datehighlevel
contextualinformation(e.g.,Level2processingintheJointDirectorsofLaboratories(JDL)model[6]).
Knowledgeoftrafficroutesisausefulinputtosituationalawarenessandhelpsinunderstandingseasonal
variationsintrafficpatterns.Besidestrafficdensities,theextractedroutesprovideusefulinformationon
dailypatternsandtransitdurationdifferentiatedbyvesseltypes.Further,extractedroutesenablerealistic
simulationsoftraffic,whichareusefultotestandevaluatetargettrackingperformance,theeffectiveness
ofsurveillancetechnologiesandotherdecisionsupportframeworks.
Generatedcontextualmaritimeknowledgecanalsobeusedtoperformrule-basedandlow-likelihood
anomalydetection.Rule-basedanomalydetectionapproachesrefertothegenerationofalertsbasedon
asetofrules[7],suchasmaximumspeedallowedinaport,presenceinareasrestrictedtonavigationor
inconsistenciesbetweenshipclaimedandactualactivity.Conversely,low-likelihoodanomalydetection
aimsatdetectingdeviationsfrom“normality”ofvesseltrafficpatternsderivedinthelearningphase(see,
e.g.,[8]andreferencestherein)andisillustratedviaanexampleprovidedinthepresentwork.Behaviors
thatdifferfrom“normality”donotnecessarilymeantheyare“anomalies”inanoperationalcontext,but
theyarehighlightedas unusual forfurtheranalysis.
Thevesseltrafficandmotioninformation,onceextracted,canbealternativelyexploitedtoperform
shiproutepredictionatagiventime.Thisistheprocessofpredictingshipmovementswellbeyond
anyavailablepositioningdata,basedonbehaviorsofpastvesselsonthesameroute.Thisisuseful,for
example,incounterpiracyapplicationstoidentifyriskareasassociatedwiththejointpredictedpresence
ofwhiteshippingdensity(e.g.,commercialmerchanttraffic)andPiratesActionGroups(PAG)[9].
Backwardandforwardtrackingofvesselscanalsobesignificantlyimprovedusingthelearnedmaritime
trafficpatterns,whichareparticularlyusefulwhenattemptingtofuseAISandspace-basedopticalor
SyntheticApertureRadar(SAR)information(e.g.,[10]).
Thedistributionandcharacterizationoftrafficcanalsobeusedforaugmentingremotesensing
trackingandclassificationperformance,enablingknowledge-basedtrackingandclassification
(e.g.,[11]).Specifically,theknowledgeofvesselpatternscanbeusedfor(i)connectingtracksoriginated
bythesametargetandbrokenbygapsincoverageorreducedobservabilityand/or(ii)providing apriori
knowledgeaboutthevesseltypeforclassificationpurposes.
InSection 2,wegiveabriefreviewofrelatedworkontrafficcharacterizationandrouteknowledge
extraction.WediscussthetrafficknowledgediscoverymethodologyinSection 3.Thisisfollowed
bysomeexamplesofrouteknowledgeexploitationinSection 4:therouteclassificationisgivenin
Section 4.1.Twospecificapplications(i.e.,routepredictionandanomalydetection)areprovidedin
Sections 4.2 and 4.3,respectively,toillustratethepotentialofthederivedknowledge.Finally,concluding
remarksaregiveninSection 5.
2.RelatedWork
Theapplicationofstatisticalmethodologiestoderivemotionpatternsfromacollectionoftrajectories
inanunsupervisedwayisachallengingtask.Severalmethodshavebeenproposedasappliedinvideo
surveillanceandimageprocessing(e.g.,[12–16]).In[17],aprobabilisticmodeltotrackhumanbehavior
overtimeispresented.Thepapers[18–21]specificallydealwithmaritimeapplications,althoughEntropy 2013, 15 2221
usingimageprocessingtechniques.Reference[12]presentedanextensivemodeltostatisticallylearn
motionpatternswithoutanypriorknowledgeintrafficsceneswherethetrafficflowsareconstrained
tostayinspecificareas.Theapplicationofsuchtechniquesinmaritimesituationalawarenesshas
gainedanincreasingacceptanceduringrecentyears.Onepossibleapproachistosubdividethearea
ofinterestintoaspatialgridwhosecellsarecharacterizedbythemotionpropertiesofthecrossing
vessels(e.g.,[10,22,23]).Althougheffectiveforsmallareasurveillance,themainlimitationsofthe
“grid”-basedapproachresidesintherequiredcomputationalburdenwhenincreasingthescale,aswell
astheneedfor apriori selectionoftheoptimalcellsize.Inareascharacterizedbycomplextraffic,
likeintersectingsealanes,theresultingmulti-modalbehavioraldescriptionwouldleadtocomplex
algorithmstoperformanomalydetection.Anewtrendinthefieldofmaritimeanomalydetectionis
toadopta“vectorial”representationoftraffic,wheretrajectoriesarethoughtofasasetofstraightpaths
connectingwaypoints;thisallowsacompactrepresentationofvesselmotionsthatcanbeimplemented
ataglobalscale.Intheworksreportedin[24,25],thewaypointsarenodesintheproximityofland
masses,andGreatCircleroutesareformedtorepresentoceanjourneys.Inareascharacterizedby
complexroutingsystems,itisnecessarytofurtherintroduceintermediatenodes(i.e.,turningpoints)to
moreaccuratelydescriberoutes.For[26,27],turningpointsaredetectedinareaswherechangesinthe
CourseOverGround(COG)ofvesselsareconsistentlyobserved.Oneofthelimitationsof“vectorial”
approachesisthedetectionofturningpointsinunregulatedareas,wherethebehaviorofvesselsismuch
morecomplexand,therefore,difficulttocategorize.Thepresentpaperaddressesthispracticalissue:
therepresentationofmaritimetrafficisstill“vectorial”,butincontrasttopreviousresearch,theroute
objectsaredirectlyformedbytheflowvectorsofthevesselswhosepathsconnectthederivedwaypoints
(i.e.,stationaryareas,aswellasentryandexitpoints).Specifically,theapproachintroducedhereisbased
onapreliminaryclusteringofwaypoints.Trajectoriesare,then,identifiedbetweensuchwaypoints.
Differentlyfromother“vectorial”representations,therouteobjectsincludedirectionalchangeswithout
explicitlyderivingturningpoints.Aswillbeseen,itisstillpossibletoconsistentlycapturemaritime
patternsinacompactandaccurateway.Itisalsofeasibletoextracttemporalinformation,likeroute
traveltimedistributionsanddailypatterns,aswellastoassociatehistoricalroutepatternstovessels.
Thesefeaturesenablethediscoveryofmaritimetrafficknowledgethatcanbeusedtoimplementhigher
levelanomalydetectiontools.Additionally,thedistance-basedapproach,adoptedin[26,27],wasnot
alwayseffectiveindistinguishingwaypointsclosetoeachother.Inordertoovercomethisdifficulty,a
density-basedalgorithm(i.e.,DBSCAN—Density-BasedSpatialClusteringofApplicationswithNoise)
wasselectedandadaptedtothespecificmaritimeapplication.
Dealingwithpotentialapplicationsofthederivedframework,anomalydetectionintrajectorydata
isoneofthemostinteresting.Withinthisfield,agreatnumberofpapersrecentlyappeared.Some
ofthemclassifyatrajectoryasanomalousbasedonthedistancetotheclosestsetoftrajectories,
groupedusingsimilaritymetrics.Whenthedistancebetweentrajectoriesisexpressedintermsofa
likelihood,wespeakofprobabilisticanomalydetection[28].In[17,29–31],someprobabilisticmethods
foranomalydetectionarepresented.Manymethodstendtofirstpre-processthetrajectories,since
commonlyusedsimilaritymeasures,suchastheEuclideandistance,requireequallyspacedandproperly
alignedtrajectories.Toovercomethesedifficulties,somealternativemetricshavebeenproposed,suchas
theDynamicTimeWarping(DTW)(see,e.g.,[14])whichfindstheminimumEuclideandistancewhenEntropy 2013, 15 2222
thedatapointsofthetwotrajectoriesareshiftedarbitrarilyintime).However,mostoftheavailable
approachesarethoughttoworkwithcompletetrajectories, i.e.,theyneedthepointsofthewhole
trajectorybeforeclassifyingthetrajectoryasanomalous.Thatisaprobleminareaswherepositional
dataarereceivedonlyintermittentlyandcompletetrajectoriesarenotobserved.Moreover,whenapplied
forsurveillancepurposes,thedetectionofanomaliesneedstobeperformedon-line.Inthiscontext,it
iscrucialtoreducedelaysbetweenthestartoftheanomalousbehaviorandthealarmraisedbythe
monitoringsystem.Sequentialprocesscontroltechniquesaimatshorteningtheaveragetimerequired
tosignalachangeinthenormalprocess.Inthispaper,weapplypoint-basedincrementalalgorithms
bothinmaritimeknowledgediscoveryandexploitation.Theprovidedexampleofanomalydetectionis
performedbyusingaslidingtimewindow,similarlytovideosurveillancetechniques(see,e.g.,[15]).A
similarapproachisproposedin[32],wheresequentialmotionanomalydetectionisperformed,assuming
thatAIStrainingdataarealreadyextractedtoformclustersofcommonpaths.Inthepresentpaper,the
pre-processing,transformationandvalidationofAISdataisintegratedintothefunctionalarchitecture,
whichgeneratesthetrafficpatternframework.
3.TrafficModelandKnowledgeDiscovery
Theproposedmethodology,calledTrafficRouteExtractionandAnomalyDetection(TREAD),
automaticallylearnsastatisticalmodelformaritimetrafficfromAISdatainanunsupervisedway, i.e.,
withoutassuminganypriorknowledgeonthemonitoredscene.Buildingontheworkin[26,27,33],the
trafficknowledgeusedhereisshapedbyvesselobjects,createdandupdatedfromthesequenceofinput
AISmessages.Aboundingboxisselectedandcorrespondstothespecificareaundersurveillance.The
seriesofvesselstatevectorscanoriginateasdiscontinuousevents,suchasabreakinobservationupdates.
Theclusteringofsuchevents,initiatedbydifferentvesselsobjects, Vs,enablesustoformwaypoint
objects, WPs,whichidentifyeitherstationarypoints, POs,entrypoints, ENs,andexitpoints, EXs,
withintheselectedboundingbox.Thelinkingofsuchwaypointsultimatelyleadstothedetection
andstatisticalcharacterizationofrouteobjects, Rs.Anomaliescanthenbedetectedonthebasisof
thediscoveredknowledgeanditsinteractionwithreal-timevesseltraffic.Thegeneralassumptionof
thestatisticalmodelisthatthefeaturevaluesofthedatapointscomefromastable(i.e.,stationary)
distributionofnormaltraffic,estimatedusingtrainingdata.Thefeaturedatapointsareconsideredas
singletrajectorypoints.Intheliterature,suchanapproachisreferredtoasapoint-basedapproach
(see,e.g.,[8]),incontrasttotrajectory-basedapproaches,wherethetrafficrepresentationisbasedon
completetrajectories(see,e.g.,[14]).
Theapproachpresentedhereisapracticalcompromisetogetareliabletrafficrepresentationwithout
increasingthemodelcomplexity:(i)itusesapoint-basedtrafficrepresentationand(ii)itintegratestime
informationintotheknowledgeexploitationtoincludetherelationshipbetweensuccessivedatapoints.
ApracticaladvantageisthattheTREADmethodologycaneasilyhandletrajectoriesofunequallengthor
withgaps.Asamatteroffact,incompleteandsegmentedtrajectoriesarefrequentinmaritimetraffic,due
totherefreshrateofAISmessagesbeinghighlyvariableforanumberoflegitimatereasons(sinceitwas
conceivedforcollisionavoidance,AISClassAunitschangethemessagestransmissionratedepending
ontheneedtorefreshinformation,rangingfromthreeminutes(shipatanchor)uptotwoseconds(fastEntropy 2013, 15 2223
and/ormaneuveringvessel).Similarly,ClassBdevicesfornon-SOLAS(SafetyofLifeatSea)vessels
reportatvariableintervals,althoughtransmittingatlowerratesthanClassAequipment[34].).This
occurswhenAIStracksare“lost”,becauseof(i)terrestrialcoveragegapsinthenetworkofreceivers,
(ii)intermittentAIS[35]or(iii)longtimeintervalsbetweensubsequentoverpassesorlowprobabilityof
detectionofsatellite-basedreceivers[36].Avesseltranspondercouldalsobeswitchedoffintentionally,
butthatisaseparateissue.
TREADFunctionalArchitectureManager: thediscoveryandexploitationofmaritimetraffic
knowledge-basedonAISinformationfollowsthefunctionalarchitectureshowninFigure 1;thestream
ofAISmessagesisprocessedtoincrementallylearnmaritimemotionpatternsthroughthe“Vessel
ObjectsManager”activatedbyrelevanteventsbasedonthetemporalandspatialcharacterizationof
vesselbehavior.Theclusteringofsucheventsleadstothediscoveryofwaypoints(stationaryobjects
andentry/exitpoints).Theknowledgediscoveryprocessisfollowedbypotentialexploitation,suchas
inrouteclassification,predictionandanomalydetection.
Figure1. Knowledgediscoveryfunctionalarchitecture:historicaldatabaseorreal-time
datastreamofAutomaticIdentificationSystem(AIS)messagesissequentiallyprocessedto
incrementallylearnmaritimemotionpatternsthroughprocesses(“managers”)activatedby
relevantevents.Theknowledgediscoveryprocessisfollowedbyon-lineexploitation,such
asrouteclassification,predictionandanomalydetection.
VesselObjectsManager: Assoonasanewvesselentersthemonitoredscene,adetectionoccurs,
andthemanagementofvesselobjectsisinitialized(seeAlgorithm 1-UnsupervisedRouteExtraction,
AnnexA).Thelistofvesselobjects, Vs,isupdatedaccordingtotheinformationcontentofeach
decodedAISmessage(ordatabaserecordwhenperforminghistoricaldataanalysis).Everyvessel
object, VsfMMSIg,isidentifiedbytheMMSInumberandcontainsbothstaticanddynamicproperties.
Whiletheformerarelinkedtotheidentificationofthevessel(e.g.,type,callsign,name,International
MaritimeOrganization(IMO)number,size),thelatterarerelatedtothestatevector(e.g.,position,
CourseOverGround(COG),SpeedOverGround(SOG))andtohistoricalandcurrentroutepatterns).
Thesepropertiesareprogressivelyupdatedwhennewdatabecomeavailable.Withreferenceto
Algorithm 1—UnsupervisedRouteExtractioninAnnexA—the VsfMMSIg:track referstotheEntropy 2013, 15 2224
timestampedhistoryofobservedstatevectorinformation(i.e.,positionandvelocityparameters)for
thevesselobject, VsfMMSIg.
Algorithm1 UnsupervisedRouteExtraction
Require: messages //AISmessagescontainingstaticanddynamicinfo,e.g., MMSI, COG, SOG, x, y, timestamp
Require: //timeneededbeforelabelingthevesselasbeing‘lost’
Require: Vs;ENs;POs;EXs;Rs //listofvessel,waypointandrouteobjects
Require: NENs;NPOs;NEXs;EpsENs;EpsPOs;EpsEXs //clusteringparameters(seeAlgorithm 2)
1: forall message 2 messages do
2: if not(VsfMMSIg) then
3: //thevesselobjectidentifiedby MMSI doesnotexist:itisaddedtothe Vs list,itsstatusinitializedas‘sailing’,
anentryeventgeneratedtobeanalyzedfor ENs objectsclusteringandtherouteslist Rs updated
4: Vs add(VsfMMSIg)
5: VsfMMSIg:status (‘sailing’)
6: VsfMMSIg:track (x;y;COG;SOG;timestamp;::: )
7: [Rs;ENs;VsfMMSIg] Online WPs Clustering(ENs;VsfMMSIg;EpsENs;NENs) //see
Algorithm 2
8: [Rs;VsfMMSIg] Route Objects Manager(Rs;VsfMMSIg) //(seeAlgorithm 3)
9: else
10: //thevesselexists:itsparametersareupdatedandtested
11: VsfMMSIg:track(end +1) (x;y;COG;SOG;timestamp;::: )
12: VsfMMSIg:avg speed =pos=t //observedaveragespeedshownbythevessel
13: if VsfMMSIg:avg speed and v:status =(‘lost’) then
30: //thelastrecordedpositionofthevesselisusedtomodifythe EXs list,toupdatethelistofvesselwaypoints
andtocreate/updatetheroutes, Rs
31: v:status (‘lost’)
32: [Rs;EXs;v] Online WPs Clustering(EXs;v;EpsEXs;NEXs))
33: [Rs;v] Route Objects Manager(Rs;v)
34: endif
35: endfor
36: endif
37: endfor
38: return Vs;EXs;ENs;POs;Rs
FromtheAISdatastream,thestatusofvesselobjectsisderivedandupdated.Changesofthestatus
ofvesselobjectsareeventsofinterest,suchas“lost”whennotobservedforatime ,whichisa
multipleofthemaximumAISmessagerefreshrateintheareaofinterest.Additionalvesselstatusesare
“stationary”/“sailing”,andtheirtransitionsidentifyothereventsofinterest,suchaswhenthevesselstopsEntropy 2013, 15 2225
orstartssailingagainfromastoppage.Sucheventscreateorupdatewaypointobjects,WPs,asshownin
AnnexA,Algorithm 1—UnsupervisedRouteExtraction—andAlgorithm 2—On-LineWPsClustering.
Algorithm2 On lineWPsClustering
Require: Vs;v //listofallvessels, Vs,andvessel, v,thatgeneratedtheeventofinteresttobeclustered
Require: WPs;Rs //listofwaypointstobeclustered, i.e.,either ENs, EXs or POs,androutestobemodified
Require: Eps;N //minimumnumberofpoints, N,inthe Eps neighborhoodoftheeventlocatedin v:track(end) thatis
requiredtogenerateacluster wpn 2 WPs
1: [WPs;op] Incremental DBSCAN(WPs;v:track(end);N;Eps) //seeIncrementalDBSCANin[37].
2: if op =‘none’ then
3: //theeventisnotclusteredandisconsideredasnoise
4: v:wps(end +1) (‘UnclassifiedWaypoint’;v:track(end))
5: else
6: //theoperationperformedintheWPsspaceiseitherthegenerationofanewwaypoint,theabsorptionintoanexisting
oneorthemergeofmultiplewaypoints:
7: if op =‘newcluster’ then
8: //theeventhascreatedanewcluster, wpn,thevessellistofwaypointsisupdatedtogetherwiththetime,
timestampwpn,ofinformation,asextractedfrom v:track(end)
9: WPs add(‘WPn’)
10: v:wps(end +1) (‘WPn’)
11: v:timestampwp(end +1) (v:track(end))
12: //inforegardingthe MMSI ofthevesselanditslastpositionisrecordedinto wpn
13: [wpn:List MMSIs(end +1);wpn:tracks(end +1)] (v:MMSI;v:track(end))
14: endif
15: if op =‘clusterexpanded’ then
16: //theeventisabsorbedintothecluster, wpn:
17: v:wps(end +1) (‘WPn’)
18: v:timestampwp(end +1) (v:track(end))
19: [wpn:List MMSIs(end +1);wpn:tracks(end +1)] (v:MMSI;v:track(end))
20: endif
21: if op =‘clustersmerged’ then
22: //theneweventcausesthemergingoftwoclusters, wpm and wpn,into wpn,theeventisclustered, wpn updated
and,finally, wpm deleted.
23: v:wps(end +1) (‘WPn’)
24: v:timestampwp(end +1) (v:track(end))
25: wpn (v:MMSI;v:track(end))
26: wpn merge(wpn;wpm)
27: forall ^ v 2 VsfMMSI = wpm:List MMSIsg do
28: ^ v:wps(^ v:wps =‘WPm’) (‘WPn’)
29: endfor
30: //mergetheaffectedroutesandupdatetherelevantlist
31: forall ^ R 2 (Rs:wps(1)=‘WPm’jRs:wps(2)=‘WPm’) do
32: ~ R (Rs:wps( ^ R:wps = ‘WPm’) =‘WPn’)
33: ~ R merge( ~ R; ^ R)
34: delete( ^ R)
35: endfor
36: delete(‘WPm’)
37: endif
38: endif
39: return WPs;v;Rs
StationaryObjectsManager: Aspecialclassofwaypointsisrepresentedbystationarypoints,such
asportsandoffshoreplatforms, POs.Thisclassofobjectsconsistsofvesselshavingaspeedlower
thanagiventhreshold.Inparticular,ascanbeseeninAnnexA,Algorithm 1—UnsupervisedRoute
Extraction—stationaryeventsaredetectedbyspeedgatingbasedonthelastobservationsrelatedtoEntropy 2013, 15 2226
thevesselofinterest:theparameters, t and pos (i.e.,thelastobservedtimeintervalandthe
resultingdisplacementinposition),arecomputedtoempiricallyderivetheaveragevesselspeed.Thisis
implemented,sincethefield, SOG,intheAISmessagesisunreliabletobeusedindetectingstationary
events.Portandoffshoreplatformsarelearnedbyclusteringthestationarybehaviorofvessels,andtheir
areasareprogressivelyshapedbyvesselsfollowingthesamebehavior.Waypointsclusteringisbased
onDBSCAN(i.e.,Density-BasedSpatialClusteringofApplicationswithNoise)methodology([38]).
DBSCANformsclustersofelementsonthebasisofthedensityofpointsintheirneighborhood.Inother
words,givenaspecificpoint, p,ifthecardinalityoftheneighborhoodofagivenradius, Eps,isgreater
thanacertainthresholdoftheminimumnumberofpoints,thensuchpointsaredensity-reachablefrom
p andbelongtothesamecluster.Moreover,twopoints, p and q,aredensity-connectedifthereisa
thirdpoint, o,suchthat p and q aredensity-reachablefrom o.Pointsthataredensity-connectedtoeach
otherbelongtothesamecluster,andpointsthataredensity-connectedtoanypointoftheclusterarealso
partofthecluster.Inthisframework,thosepointsthatarenotdensity-connectedtootherpointsdonot
belongtoanyclusterandareconsiderednoise.
Algorithm3 RouteObjectsManager
Require: v, WPs (i.e.;ENs;EXs;POs), Rs
1: //ifthevesselhaspassedthroughatleasttwowaypoints
2: if length(v:wps) > 1 then
3: [wpa;wpb] v:wps(end 1: end)
4: if not(Rsfwpa to wpbg) then
5: //theroutefrom wpa to wpb doesnotexist:itisaddedtothe Rs list
6: Rs add(Rsfwpa to wpbg)
7: endif
8: //updatetherelevantroutebyaddingthetrackportionbetween wpa and wpb
9: timestampwpa = v:timestampwp(v:wps = wpa)
10: timestampwpb = v:timestampwp(v:wps = wpb)
11: Rsfwpa to wpbg:params(end +1) (v:track(timestamp 2 [timestampwpa ;timestampwpb ]))
12: //updatethevessellistofroutes
13: v:routes add(‘Rsfwpa to wpbg’)
14: endif
15: return v;Rs
Differentlyfromcentroid-basedclustering,DBSCANdoesnotrequirethenumberofclusters apriori,
whilearbitrarilyshapedclusterscanbeeasilyfoundasoftenobservedwithinthemaritimetrafficcontext.
Forinstance,centroid-basedmethodscanfailindiscriminatingdifferentportswhosecentroidsareclose
toeachother,whentheyarelocatedalongthecoastline,asshowninFigure 2.Moreover,DBSCAN
introducesawaytoclassifynoisepoints,whichcanbeusedtodetectandfilteroutliers,aswillbe
shownhereafter.
Theon-linelearningenablesanincrementaldensity-basedclusteringofwaypoints.Thewaypoints
clustersareeithercreated,expandedandmerged,followingthetypicalprocedureofincremental
DBSCAN,asintroducedin[37].InAlgorithm 2,theon-lineclusteringof WPs isillustrated,showing
howthevesselobjectfeaturesareupdatedaccordingly.Theclusterparameters(i.e.,theradius, Eps,of
theneighborhoodoftheeventofinterestandtheminimumnumber, N,ofpointstobedetectedinthe
Eps-neighborhoodofthevessel)aretuned,basedonthespecificnatureofthe WPs (i.e.,whetherthey
are POs or ENs/EXs objects)andonthespecificfeaturesofthemonitoredarea.Entropy 2013, 15 2227
Topographically,portandoffshoreplatformobjectsarerepresentedviaaspatialdistributiongivenby
thecoordinatesofthevessels,whichcontributetocreateorupdatethem.Asaconsequence,suchobjects
areautomaticallydescribedviaalistofvesselobjectsandavolumeoftraffic.Inthisway,afrequency
plotbasedonthetypeofvesselscanbeassociatedtoeachportandoffshoreplatformobjectinorderto
helpcharacterizetheactivitiesinthestopzones.
Figure2. Stationarypoints(greendots)incrementallydetectedduringatwo-weekperiod
overtheStraitofGibraltar,anareacharacterizedbyintensetraffic.Stationarypointsarethen
clusteredusingincrementalDensity-BasedSpatialClusteringofApplicationswithNoise
(DBSCAN)intoportandoffshoreplatformobjects,whoseconcavehulls(right)consistently
captureareaswherevesselsanchoroutsideports.
EntryandExitPointsManager: Anotherclassofwaypointsusefulfordescribingthemotionpatterns
withinaselectedareaisrepresentedbyentry(ENs)andexit(EXs)points.Wheneveravesselobject
enters(leaves)theareaunderanalysis,itgenerates“birth”/“death”events(correspondingtovesselstatus
transition“transmitting”/“lost”and viceversa),andtherelevantentry/exitpointiscreatedorupdated.
Asinimageprocessingandvisualsurveillance(see,e.g.,[16]),entryandexitpointsarerelatedtothe
monitoredsceneandmaychangedependingontheboundingboxarea,whileportoroffshoreplatform
objectsarefixedreferencepoints.Similarlytothestationarypoints,entryandexitpointsarelearned
throughtheincrementalDBSCANmethodanddescribedwithalistoftransitingvesselobjectsand
avolumeoftraffic.Algorithm 2—On-LineWPsClustering inAnnexAsummarizesthemainsteps.
Figure 3 showstheresultsoftheunsupervisedwaypointsdetectionandcharacterizationovertheNorth
AdriaticSea,wheremanyroutingsystemsarepresent(suchastrafficseparationschemes),becauseof
theintensetrafficandoildrillingactivities.
RouteObjectsManager: Oncethewaypointsarelearned,routeobjects, Rs,canbebuiltbyclustering
theextractedvesselflows,whichconnecttwoports(i.e.,localroutes),anentrypointtoaport,aportand
anexitpointoranentrypointandanexitpoint(i.e.,transitroutes).Routeobjectsdonotmerelycount
theregisteredtransitingvessels,butarealsostatisticallydescribedbythestaticandkinematicfeatures
ofthevesselsthatcreatedorupdatedthem.
Specifically,theRouteObjectsManager,whosemainstepsarereportedinAlgorithm 3—Route
ObjectsManagerinAnnexA—dealswiththecreationofnewrouteobjectsandwiththedynamicEntropy 2013, 15 2228
managementoftheirfeaturesandlabels,asresultingfromtheincrementalclusteringoftherelevant
WPs describedinAlgorithm 2—On-LineWPsClustering,AnnexA.
Figure3. Waypointsdetectionandcharacterizationovera 200 160 kmareaintheNorth
AdriaticSea(a)fromMarch1toMay15,2012.Theunsupervisedanalysisleadstothe
detectionofentry(cyan),exit(magenta)andstationaryareas(green)(b),oneofthem
beinganoffshoreregasificationgatewayasconfirmedbytheshiptypedistributionanalysis
(c),followingthecategorizationin[39],performedontheMaritimeMobileServiceIdentity
(MMSI)listofregisteredvessels.
Onceavesselentersthescene,itsfeaturesarecomparedwiththeexistingsetofroutes.Ifaroute
alreadyexists,whosepositionalfeaturesarecompatibletothevesselfeatures,boththevesselisadded
totheroutelistofvesselsand,mutually,therouteisaddedtothelistofthe WPs transitedbythevessel.
Otherwise,thevesselcontributestotheinitializationofanewroute,and,whenaminimumnumber
ofdetections(i.e.,numberoftransitsalongtheroute)isreached,thenewrouteisactivated.Each
routeobjecthasaspatio-temporalsequenceofstatevectors,facilitatingtheanalysisandclassification
ofactivities.Thedetectedroutescanbeorganizedinhistoricalatlases,whichsummarizethemaritime
trafficintheconsideredarea.Asanexample,wereporttheroutecodebooklearnedintheNorthAdriatic
SeainFigure 4.SomeofthederivedroutesarenoteasytoexplainbyglancingattheAIStrafficmessages
reportedinFigure 3b.Themethodologyshowsasignificantagreementwiththetrafficschemesinuse
onnauticalcharts.
InFigure 5,anexampleoftworoutesextractedbetweentwodetectedstationaryareasintheStrait
ofGibraltarisillustrated.Themajoreastandwestboundtrafficvolumessignificantlyexceedthetraffic
flowbetweentheselectedports,makingtheroutes’visualisolationdifficult.
Thetworoutesadheretothemaritimerulesoftheroadwhencrossingthemaintrafficflows:the
maintrafficinthesamedirectionflowiscrossedatashallowangle(i.e., 20
–30
),whiletheopposing
trafficflowineachrouteiscutacrossatbroadangles(i.e., 90
).Thesecondportionofeachrouteis,
therefore,morediffuse,astheferriesmaneuvermorewhencrossingtheopposingsealanescompared
toovertakingtrafficinthesamedirection.Theextractedroutes,whosenumberisnotassumed apriori,
butautomaticallylearned,arecharacterizedalsobytheinformationoftheenteringandexitingtime
oftheregisteredvesselstogetherwiththeirshiptype.Differentfromlivevideoanalysisapplications,Entropy 2013, 15 2229
thisallowstheextractionofhigherlevelinformation,suchastheshiptype,distributionoftheroute,its
averagetraveltimeandthedaily/weeklypatterns,asshowninFigure 6.
Figure4. SetofhighlydenseroutesintowhichthetrafficinFigure 3 wasdecomposed.
Anomaliesinthetrafficschedulecanthereforebemodeledonvesselsthatarefullycompliantwith
theroutedirections,butusethematlow-likelihoodtimes.Detectedrouteobjectsoftenshowtrajectories
thatsharethesameenteringandexitingwaypoints,buttheirpathconsiderablydeviatesfromotherEntropy 2013, 15 2230
vesselpathswithinthesameroute.Itisnecessarytodiscardthoseoutliers,sothatanomalydetection
canbeperformedbasedonamorerepresentativepictureofthevesselnormaltraffic,asiscommonly
doneinstatisticalprocesscontrolandchangedetectionpractice.Thus,anomalydetectionisrelated
to,butdiffersfrom,noiseremovalinthedata:noiseworksasanobstructiontodataanalysisandis
notofprimaryinteresttotheanalyst.Undesiredoutliersmustberemovedbeforefurtherknowledge
exploitationcanbeperformed.Thispre-processingphaseisimplementedbyusingtheDBSCAN
method.Specifically,itincludestheclassificationofroutepointsascorepoints,borderpointsand
noisepoints.Noisepointsarenotconsideredrepresentativeofhistoricalpatternsandarefilteredout.An
exampleofapre-processedrouteisreportedinFigure 7b.Ashighlightedin[8],vesselstypicallyfollow
trafficsealanesthataresequencesofstraightlines.TheGaussianMixtureModels(GMM),verypopular
inthepatternrecognitionliterature,canbeusedtofitthedistributionofpositiondatapoints.Alongthe
minoraxisperpendiculartothelane,theGaussianmodelscancapturethevesselpositionvariabilityand
displacements.However,alongthemajoraxis,thevesseldistributionisassumedtobeapproximately
uniform,andthus,theGaussiandistributionisasub-optimalspatialdensitymodel.So,anon-parametric
approachcanbemoreappropriatetomodelthetwo-dimensionaltrafficdensitydistributionandhas
beenadoptedinthepresentwork.Amongthenon-parametricapproaches,KernelDensityEstimation
(KDE)isacommontechniqueforestimatingtheunknownprobabilitydensityfunction(pdf)ofthe
randomvariable“vesselposition”.ComparedtoGMM,KDEmakesnoassumptionabouttheparametric
modeloftheunderlyingpdf,whoseformisestimatedusinghistoricaldatasamples.Moreover,KDE
doesnotneedtospecifythenumberofcomponentsofthemixturemodel,whichisoneofthemain
drawbacksofGMM.Forthesereasons,KDEhasshownasuperiorabilitytoaccuratelymodeltraffic
lanes.Figure 7creportstheKDErepresentationofarefinedroute,adoptingaGaussiankernelwithan
optimizedbandwidthselectionbasedontheMinimizationofaCostfunction.
Figure5. AIStrafficdatainproximityoftheStraitofGibraltar(left)collectedovertwo
months,and(right)extractedroutesbetweenthelearnedportofTarifaandtheoldportof
Tangier,bothhighlightedinred.Entropy 2013, 15 2231
TREADwastestedindifferentareasandusingdatafromdifferentAISsources(i.e.,terrestrialand
satelliteAIS).Figure 8 showsanexampleofthetrafficknowledgelearnedusingsatelliteAISdatainthe
IndianOcean.ItisnoteworthythatsomeoftheroutesdisplayedinFigure8barenoteasilyanticipatedby
simplylookingattherawAIStrafficdatainFigure 8a.Asanexample,theroutefromtheSuezCanalto
theLaccadiveSea(Figure 8c)isfirstlyconstrainedbytheInternationallyRecommendedTransitCorridor
(IRTC)andeasilyisolated.Then,itbecomesmoredisperseoutsidetheroutingsystemandmoredifficult
tobeidentified.ThespatialspreadofthesecondrouteinFigure 8eshowshowtheeffectsofpiracyhave
modifiedthecommonroutesovertheIndianOceannearSomalia,duetohigh-riskareas.
Figure6. Dailypatternsbetweennorthbound(left)andsouthbound(right)routescovered
byfourferrieswhoseschedulecanbederivedbythemultiplepeaksofthetimehistograms
onthebottom.
Figure7. Color-codedroutes(a)extractedovertheareainFigure 3,showingpatterns
notclearlyvisiblebyanalyzingtrafficdensitydata(seeFigure 3b);oneofthem(b)is
highlighted,showinginredthepotentialoutliersdetectedandisolatedusingdensity-based
clusteringontheroutepoints.TheKernelDensityEstimation(KDE)distributionforthe
specificrouteisfinallycomputed(c).
Atlast,eachroutecanbedecomposedintotheelementarytrajectoriesfollowedbyallthevessels
belongingtothatroute,thusfacilitatingthesearchfortracksthatdeviatefrom“normality”.WhenaEntropy 2013, 15 2232
vesselobjectisinstantiated,itsfeaturesarecomparedwithalltheroutesalreadypresentinthedatabase
performingRouteClassification(seeSection 4.1).
Figure8. Three-monthsatelliteAISpositioningdataovertheIndianOcean(a);
superpositionofdetectedroutes(b).Twoofthemarefurtheranalyzedintermsofspatial
(c and e)andtraveltimesdistribution(d and f).
3.1.LearningPerformanceandTrafficEntropy
ThelearningperformanceofTREADmethodologywasanalyzedintermsoftheratiobetweenthe
numberofAISmessagesmappedintotheextractedsystemofroutesandthenumberofprocessed
positioningmessages.Figure 9 showsthelearningresultson50-daygroundbaseddataovertheStrait
ofGibraltarandtheNorthAdriaticSeaandsatellite-baseddataovertheIndianOceanasintroducedby
Figures 3b, 5aand 8,respectively.Afteracommonpreliminaryphasewhenthesystemconstructsthe
entry/exitandstationarypointobjects,thelearningaccuracyperformancestabilizesatdifferentlevels,
dependingontrafficdensityandconstraints.Thus,themorethetrafficisconstrainedorregulated,the
moreaccuratetheunsupervisedlearningresults.Theextremelyhightrafficdensityandrigidrouting
systemallowedtheStraitofGibraltartobelearnedrelativelyquicklyandconsistently,capturingupto
95%oftheprocessedmessages.LoweraccuracyperformancecanbeseenintheNorthAdriaticSea,
where,despitetherelativelyconstrainedtraffic,thereareopportunitiesformanyroutestobefollowed
withinthetimewindow.Asaresult,only70%ofthetrafficislearned.Thisaspectisevenmore
pronouncedintheIndianOcean,wheremerely40%ofthetrafficcanbeclustered,duetoalackoftraffic
constraintsoveralargeareacombinedwiththelowupdateratesofsatellite-basedAISdata.Entropy 2013, 15 2233
ThecurvesinFigure 9 representtheportionoftheinformationthatcontributestothehistoricaltraffic
patternmodel versus theamountofprocessedinformation.Theamountofinformationthatdoesnot
contributetothetrafficknowledgediscoveryisdiscarded.Thereisacertainpointofdiminishingreturns,
oranupperthreshold,forthenumberofdatapoints,whichareincludedintothelearnedsystemofroutes,
beyondwhichtheadditionaldatadonotprovidefurtherusefulinformationtothehistoricalroutesystem.
Thetrafficpatternknowledgediscoveryprocesscanthereforebelinkedtothenotionofentropy,which
measuresthedegreeofdisorderinasystem.InformationTheoryentropyiswidelyemployedtopredict
humanmobility,AsynchronousTransferMode(ATM)trafficstreamsandcellularnetworktraffic[40].
Entropyclearlyprovidesameasureoftheextenttowhichthetrafficcanbepredictedonthebasisofthe
historicalpatternsoverthearea.Withinthisframework,entropycanbeusedtoquantifytheinformation
gainthatthederivedtrafficpatternswillprovideforprediction[41].Ingeographicalclusteringstudies,
thenotionofentropyhasbeensuggestedin[42]andrecentlyappliedtodetectabnormalactivitiesin
videosurveillancein[43].Asaconsequence,thedetectionofpotentialanomaliescanbelinkedtothe
trafficentropy:thecapabilitytosuccessfullyrecognizelow-likelihoodbehaviorsisenhancedinareas
wherethetrafficpatternsarehighlyregularand,therefore,theassociatedlevelofdisorderislow.
Figure9. PortionofAISmessagescapturedbythelearnedsystemofroutesoverthereported
areasofinterest.
Thus,whilethelearningratedependsonthetrafficdensity,theendstateknowledgediscovery
performanceisaffectedbythedifferentlevelsoftrafficentropyovertheareaofinterestandwillvary
fromregiontoregion.Entropy 2013, 15 2234
4.RoutesKnowledgeExploitation
Similarlyto[12,15],oncethepictureofthemaritimetrafficisconstructed,thehistoricalknowledge
canbeusedto(i)classifytheroutes,assigningtoeachofthemaprobabilitythatthevesselisactually
followingit,(ii)predictthefutureroutealongwhichavesselisgoingtomove,inagreementwiththe
partiallyobservedtrackandgiventhevesselstaticinformationand(iii)detectanomalousbehaviorsthat
deviatefromthelearnedtrafficnormality.
4.1.RouteClassification
Classifyingasetofvesselpositioningobservationsintospecificroutesiscrucialforaugmentingthe
situationalawarenessoverthemaritimetrafficarea.Routeclassificationassignsaprobabilitytoeach
routecompatibletothevesselposition.Thisisexpressedastheposteriorprobabilitythatthevessel
belongstothatspecificroute,havingobservedapartialvesseltrack.Generallyspeaking,avesseltrack,
V,isatimeseriesof T observedstatevectors, vi:
V = fv1; v2;:::; vT g (1)
wherethestatevectorobservation, vt,isdirectlyisolatedfromthebroadcastAISinformation.Inthis
study,itincludesbothpositionandvelocityinformationasextractedbythevesseltrackproperties,
v:track (seeSection 3):
vt =[xt;yt; _ xt; _ yt]
|
(2)
where xt and yt arerelatedtothevesselcoordinatesandthevelocitycomponents, _ xt and _ yt,are
derivedbycombiningSOGandCOGinformation,basedontheconditions:SOGt =
p_ x2
t +_ y2
t and
COGt = tan 1
_ yt
_ xt
Thevesseltrack, V,canbeassociatedtoatimeseriesofregions,
S = fs1; s2;:::; sT g,spatially
identifiedbycirclesofradius d centeredintheobservedpositions, [xt;yt],whichrepresentthetemporal
sequenceofstatesandtakeintoaccountthetimelags, t,betweensubsequentobservations.Thespatial
regionidentifiedbythe t th state, st,asfurtherdiscussedhereafter,canbeusedasamasktocapture
therouteelementsintheneighborhoodoftheobservation, vt,subsequentlyusedtocharacterizethelocal
routebehavior.Itisclearthattheselectionofthedistance, d,and,therefore,thesizeofthestateregions,
affecttherouteclassificationeffectiveness:if d istoosmall,thecharacterizationofthelocalroute
behaviorwouldbebasedonareducednumberofneighbors,leadingtopoorgeneralizationcapabilities.
Similarly,if d istoolarge,thecharacterizationwouldbebiasedbythemixingofdifferentbehaviors
(e.g.,asinthecaseofnon-rectilinearroutes).ThisisillustratedbyFigure 10.
Ithasbeenfoundthatstateregionswitharadius d intheorderofafewnauticalmilesleadto
acceptableclassificationresultsindependentlyoftheroutespatialanddirectionaldispersion.Entropy 2013, 15 2235
EachAISmessagecanbedecodedtoderivethevesseltype, c,accordingtothecategorization
in[39].Theclassificationproblemliesinfindingtheroute, Rk
c ,thatmaximizestheposteriorprobability,
P(Rk
c jV; S),overthe k =1;:::;K possiblecompatibleroutes Rk
c 2 Rs (seeSection 3):
Rk
c =argmax
k
P(Rk
c jV; S) (3)
where,followingtheBayesrule, P(Rk
c jV; S),canbedecomposedasfollows:
P(Rk
c jV; S) / P(V; SjRk
c )P(Rk
c ) (4)
Figure10. Exampleofobservedvesseltrack, fvt 2; vt 1; vtg (red),associatedtemporalstate
sequence, fst 2; st 1; stg (circles)andpoints(blue)ofacompatibleroute,asresultingfrom
thetrafficknowledgediscoveryprocess.Iftheselectedradiusistoolarge(e.g., d0
>d),
distinctlocaldirectionaldistributionscanbeincludedintothesamestate,biasingthe
motioncharacterizationoftherelevantobservationneighborhoodand,thus,theroute
classificationprocess.
Theprior P(Rk
c ) canbeempiricallyevaluatedastheratioofthenumberofvesselsthattransited
alongtheroute, Rk
c ,overthetotalnumberofvesselsdetectedintheareaofinterest.Thelikelihood,
P(V; SjRk
c ),accountsforthejointprobabilityofthetimeseries, V,oftheobservationsandthesequence
ofthestates,
S,comparedtotheroute, Rk
c .
SimilarlytotheprobabilisticapproachintheHiddenMarkovModel(HMM)literature[44]andinthe
spatio-temporaltrajectoryminingliterature(see,e.g.,[45,46]),thejointprobability, P(V; SjRk
c ),ofthe
vesseltrack, V,andstatessequence,
S,giventheroute, Rk
c ,canbewrittenasfollows:
P(V; SjRk
c )= P(Vj S;Rk
c )P( SjRk
c ) (5)
thesequenceofstates,
S,beingfixed,oncethetracksequence, V,hasbeenobserved.Similarinteresting
examplescanbefoundinsignalprocessing[47],videotracking[15]andmaritimesurveillance
applications[48].
Theprobability, P(Vj S;Rk
c ),oftheobservationsequence, V,forthestatesequence,
S,giventhe
route, Rk
c ,canbeexpressedasfollows:
P(Vj S;Rk
c )=
T Y
t=1
P(vtjst;Rk
c ) (6)Entropy 2013, 15 2236
InEquation(6),theprobabilityofobservingafeaturevector, vt,inonestate, st,isassumedto
beindependentofthefeaturevectorsinotherstates.Thisisanapproximation,sincethefeature
vectorsofthetrack, V,arerelatedtothesamevesseland,hence,areinterdependent.Nevertheless,
thisapproximationhasbeenadoptedelsewhere(see,e.g.,[47])withsatisfyingresults.Thegeneric
P(vtjst;Rk
c ) istheprobabilityofobservingthefeaturevector, vt,giventheelements, fRk
c (`):[x;y; _ x; _ y]g,
oftheroute, Rk
c ,withinthestateregion, st,definedasfollows:
fRk
c (`):[x;y; _ x; _ y]g where kRk
c (l):[x;y] [xt;yt]k d; 8l 2 ` (7)
Theprobability, P(vtjst;Rk
c ),iscalculatedas:
P(vtjst;Rk
c )= P(xt;yt; _ xt; _ ytjst;Rk
c )= P(_ xt; _ ytjxt;yt; st;Rk
c )P(xt;ytjst;Rk
c ) (8)
where P(_ xt; _ ytjxt;yt; st;Rk
c ) istheprobabilityofobservingthevelocitycomponents, _ xt and _ yt,within
thestate, st,asidentifiedbytheneighborsofthecurrentposition, [xt;yt],withinadistance, d.This
conditionalprobabilitytakesintoaccountthevelocitydependencyontheareawherethevesselisactually
observed.Inotherwords,thiscomponenttellsustheextenttowhichthevesselvelocityvectorisinline
withthehistoricalspeedanddirectionlocalfrequencydistributions,giventheroute, Rk
c .Giventhat
thestate, st,isidentifiedbytheobservedposition, [xt;yt],theprobability, P(_ xt; _ ytjxt;yt; st;Rk
c ),can
besimplifiedas P(_ xt; _ ytjst;Rk
c ).Both P(_ xt; _ ytjst;Rk
c ) and P(xt;ytjst;Rk
c ) canbeestimatedusing,e.g.,
non-parametricmethods,suchastheKernelDensityEstimator,asdiscussedinSection 3.
TheotherterminEquation(5)istheprobability, P( SjRk
c ),ofthestatesequence,
S,giventheroute,
Rk
c ,andcanbedecomposedasfollows:
P( SjRk
c ) / P(s2js1;Rk
c )P(s3js2;Rk
c ) :::P(sT jsT 1;Rk
c ) (9)
wheretheproportionalityfollowsfromtheassumptionthattheinitialstateprobability, P(s1jRk
c ),is
equalforallthepossiblestatesequencesin Rk
c .Inotherwords,thesequenceisequallyprobableto
startatanypointoftheroute.TheEquation(9)accountsforthecompatibilityofthestatesequence,
fst 1; stg,totheroute, Rk
c ,andtakesintoaccountthehighvariabilityofAISrefreshrates,asdiscussed
inSection 3.Thiscanbeestimatedasafunctionofthedistance, p,betweentheobservedposition,
[xt;yt] (whichisthecenteroftheneighborhood st),andthepredictedposition, [^ xt; ^ yt],calculatedby
propagating [xt 1;yt 1] tothecurrenttime, t,giventhevelocitydistributionalongtheroute, Rk
c ,as
describedinthetrackpredictorinAlgorithm 4—TrackPredictor(containedinAnnexA)—where de is
theceilingfunctionand t isaroughtimeincrementbetweentwopositions.Thetimeincrementcanbe
convenientlychosen,dependingonthecomplexityoftheroute(see[32]).Thedistance, p,canbeused
toestimatethelikelihoodofobservingthestate, st,giventhepreviousstate, st 1,andtheroute, Rk
c . p
canberegardedasarandomvariabledescribingthepredictionerror, i.e.,thedisplacementofthecurrent
observedposition,withrespecttotheexpectedone,givenatimelag, t,betweentheobservations
andacompatibleroute, Rk
c .Thus,thedistance, p,isultimatelycalculatedastheEuclideandistance,
p = k[xt;yt] [^ xt; ^ yt]k,sincemostobserveddistancesaregenerallybeloweightnauticalmiles,witha
reducedcurvatureeffect.Entropy 2013, 15 2237
Algorithm4 TrackPredictor
Require: Rk
c , [xt 1;yt 1], timestampt, timestampt 1, stept, Eps
1: t (timestampt timestampt 1)
2: (t)=d(t)=stepte
3: for = timestampt 1 to timestampt step do
4: find ` s.t. 8l 2 ` : kRk
c (l):[x;y] [x ;y ]k Eps
5: s fRk
c (`):[x;y; _ x; _ y]g
6: [_ xs ; _ ys ] median (s :[_ x; _ y])
7: [x+1;y+1] [x ;y ]+[_ xs ; _ ys ]
8: endfor
9: return [^ xt; ^ yt]
Inordertoinvestigatethevariabilityof p,aparametricmodelhasbeenselectedfromthe
literatureandanalyzed.Typically,survivaldistributionsareusedtoestimatetime-to-event.These
functionsareappropriate,becausetheradialdistance-to-eventcanberegardedasanalogousto
time-to-event.Exponential-likemodelsshowgoodnessoffitandalsoconformwithsomerelated
literature(see,e.g.,[12,49,50]).Amongthem,theWeibullmodelhasbeenselected,sinceitshows
goodcorrelationwiththeempiricaldistributionsoftheobserveddistancesonrealAISdatastreamsin
differentareas.Asaresult,thetransitionprobability, P(stjst 1;Rk
c ),can,then,beexpressedasfollows:
P(stjst 1;Rk
c )=exp
"
p
k
k
#
(10)
Theshapeparameter, k,basicallydoesnotchangewithtime,whilethescaleparameter, k,is
assumedtodependonthetimewindow, t,betweentwosubsequentobservationsasfollows:
k = mkt (11)
for t > 0.So,theexpectedvaluefortherandomvariable, p,is:
E fpg = k
1+ 1
k
(12)
andthevarianceisequalto:
Var fpg = 2
k
1+ 2
k
(E fpg)
2
(13)
where istheGammafunction.DuetoEquation(11),thevarianceincreaseswith 2
t ,accounting
forthegrowthofuncertaintyrelatedtothepropagationmodelinlong-termprediction,astypicalof
diffusionmodels.
Theestimates, ^ k and ^ k,areobtainedusingthesampleddistancesbetweenthepredictedpoints,
[^ xt; ^ yt],andtheactualobservedpoints, [xt;yt],inthespecifiedroute, Rk
c ,foreachgiventimelag, t,
usingMaximumLikelihoodmethods(see,e.g.,[51]).
Fromthisstartingpoint,apracticalestimate, ^ mk,canbeobtainedstraightforwardlyviaalinear
regressionforeachroute, Rk
c .ThenEquation(10)becomes:
P(stjst 1;Rk
c )=exp
"
p
^ mk t
^ k
#
(14)Entropy 2013, 15 2238
for t > 0.Inthisway,aconsistenttransitionprobabilityfortheconsideredlikelihoodestimation
problemisobtained.TwodesiredbehaviorsareincorporatedinEquation(14).Thus,givenatimelag,
t, P(stjst 1;Rk
c ) decaysasthepositioningdistance, p,increases.Conversely,givenadistance, p,
P(stjst 1;Rk
c ) increasesasthetimelag, t,increases.Figure 11 showsanexampleoftheanalysis
startingfromtherealstreamofAISdataintheNorthAdriaticSeaarea(seeFigure 3).
4.2.RoutePrediction
Whenobservingasequenceofstatevectorsforavesselofagiventype, c,therouteclassification
assignsaprobabilitytoeachcompatibleroute,basedontheposteriorprobability(4)thatthevessel
belongstothatroute.Inotherwords,giventhelateststatevectorsequenceforavesselandatime
window, t,thefuturepositionofthevessel,bothinasingleandmulti-stepmode,canbepredicted
followingAlgorithm 4.
Figure11. Estimationoftransitionprobabilities:Empirical(solidblueline)andfitted
Weibull-like(dashedredline)distributionsofthedistances, p,innauticalmilesbetween
thepredictedandactualpositionsofvesselsintheNorthAdriaticSeaAreaanalyzedin
Figure 3.Thetimelag, t,rangesfromfiveto60minutes,withanincrementoffiveminutes.
Thefigureshowshowtoderivethetransitionprobability, P(stjst 1;Rk
c ),fromthedistance
betweenthenewobservation, [xt;yt],andthepredictedposition, [^ xt; ^ yt],giventhe Rk
c and
thepreviousobservation, [xt 1;yt 1].Thisgivesameasureofmatchbetweentherouteand
theobservedstatesequence.
Assumingthatnoanomalieswillbeobservedforthevesselsofinterest,theroutepredictionis
essentiallyapplyingcontext-basedtrackingalgorithms.Inotherwords,themeanvelocitydirection
togetherwiththeseriesofroutepointsprovidedbypreviousvesselsrepresentasetofconstraints
thatcanbeusedtoefficientlypredictfuturevesselspositions,basedonstaticstoredinformation,
suchasthevesseltype.Inthiscase,theinferenceisdrivenbythelearnedroutecodebookandby
thetopmostprobableroutescomputedusingEquation(6).Figure 12 showsanexampleofrouteEntropy 2013, 15 2239
prediction.InFigure 12a,agivenvesselentersthesceneintheright-bottomcornerandismonitored
inthreesubsequenttimeframes, T1, T2 and T3.Ineachtimeframe,atracksegmentofthefive
mostrecentstatevectorsisobserved.Basedonthesefiveobservedvalues,themethodologyisable
toprovideaprobabilisticpredictionofthevesselfinalpositionafteragivenamountoftime,using
thehistoricalcontextualinformation.Fortheconsideredvessel,thereareinitiallyfivecompatible
routes:thereportedpercentagesrepresenttheprobabilitythatthevesselisexpectedtomovealong
eachroutebasedontherouteclassificationprocess.InFigure 12b,sevenhoursaheadfromthelatest
observation,thepredictedpositions,obtainedfollowingAlgorithm 4,areshown,togetherwiththe
associatedprobabilities,computedasinSection 4.1.InFigure 12c,weseethatinthenexttimeframe
(threehoursafterward),theprobabilitiesareupdatedtoreflectthereducednumberofdestinationoptions.
Figure12. Vesseldestinationpredictiongiventhesetofcompatibleroutes(a)atthree
differenttime-frames(b, c and d).Theprobabilityofvessellocationiscomputedbased
onEquation(6)andconditionedtothedistributionofvesseltypeswithineachroute.It
canbeseenthattheextractedroutesprovideenoughinformationtoconsistentlypredictthe
vesselpositionhoursahead,eveninrelativelycomplexroutingsystems.Entropy 2013, 15 2240
InFigure 12d,theprobabilitiesthatthevesselwouldturneitherWestorNorthhasbecomenegligible,
andthemostprobableportturnsouttobetheactualdestinationofthevessel.Itisinterestingtonote
thatthecomputationofthepredictionprobabilitieshasincludedthevesseltypecharacterization.Such
contextualinformationresultedinenhancedpredictionperformance.
4.3.AnomalyDetection
Thedetectionofananomaly, H1,attime, t,canbethoughtofasdeviationfromthenormality, H0,
learnedusinghistoricaldataandcanbeapproachedbysettingaminimumthresholdinEquation(15),
accordingtothedetectionandfalsealarmratesrequiredbythespecificsurveillanceapplication:
argmax
k
P(V; SjRk
c )P(Rk
c )
H1
Q
H0
Th (15)
where V istheobservedtrackfortheVesselOfInterest(VOI)and S isthecorrespondingtemporal
statesequence.Inordertoavoidproblemsderivingfromincompleteorintermittenttracks,theanomaly
detectionisperformedon-line,usingaslidingtimewindow,whichcapturesonlythemostrecentpoints
ofthepartiallyobservedtrack.Thus,theposteriorprobabilityofobserving V,giventhetraffichistory
inthearea,isincrementallycalculatedassoonasanewobservationisreceived.
Figure13. Posteriorprobabilityoftheobservedtrackforthemonitoredvesselofinterest.
ThevesselstartsfromPortofLivorno(greendots)andexitstheareaintheexitpoint
(magenta),aftermakingananomalousdoubleU-turn.Entropy 2013, 15 2241
Figure 13 exemplifiessuchasequentialanalysis.ThemonitoredsceneisinfrontofthePortof
Livorno,intheLigurianSeaarea.Avesselshowsananomalousbehavior,whichiscorrectlydetectedby
theproposedmethodology.Thevesselinitiallymoveswestward,inaccordancewiththemotionpattern
ofthecompatibleroute,resultingfromtheclassification.Thecompatiblehistoricalrouteisshownwith
grayarrows.Whilethevesselsailsthearea,theprobabilityofitsstatevectorissequentiallyupdated
basedonEquation(6).Thetrajectoryofthevesselisrepresentedwithasequenceofarrowswhosehead
markercolordependsontheincrementalposteriorprobabilitycalculatedwithagiven-widthbackward
timewindow.Thevesselinitiallymoveswithinthenormalroute,andbothitspositionandmotionare
compatiblewiththehistoricalpatters.Itstrackedpositionsareshownbythebluedots.Then,thevessel
startsheadingeastwardandmakesadoubleU-turn:thepositionalfeaturesarestillcompatible,sincethe
vesselismovinginsidetheroutearea,buttheposteriorprobabilitydecaysdramatically,duetothevessel
headingandvelocity,whichareincompatiblewiththehistoricalpatterns.Thetransitionprobabilities
accountforthismotionincompatibility.Thereddotshighlighttheanomalousbehaviorandchange
againintoblueafterthevesselre-entersthenormalmotionflowoftheroute.
5.Conclusions
Thelargeamountofshipmovementdatacollectedbyterrestrialnetworksandsatelliteconstellations
ofAISreceiversrequirestheaidofautomaticprocessingtechniquesifthedataaretobefullyutilized.
TheTREADmethodologyderivesknowledgeofmaritimetrafficinanunsupervisedway,inorderto
detectlow-likelihoodbehaviorsandtopredictvesselsfuturepositions.
Thelearningprocessisrobustwithrespecttodifferentnumberofsensors,theircoverageandrefresh
rateandthescaleoftheareaofinterest.Thetrafficrouteextractionprocessisbasedonincremental
learningandcanbeappliedbothinreal-timeorbatchfashion.
Inthisresearchwork,vesselsareanalyzedasacollectiveentitythatconstructsandshapesthetraffic
patternsovertheareaofinterest.Theresultinglow-likelihoodbehaviordetectioncanoftenbefully
explainedthroughtheinteractionbetweenobjects.Forexample,asuddenchangeincourseorspeedcan
beduetocollisionavoidancemaneuverwithrespecttoanothervesseloranintenttodelaythetransit
toarriveatapre-arrangedtime.Thislevelofinteraction,iftakenintoaccount,canhelpimprovethe
interpretationofvesselbehaviorandintent.
Acknowledgments
ThisworkrelatestoDepartmentoftheNavyGrantN62909-11-1-7040issuedbyOfficeofNaval
ResearchGlobal.TheauthorswishtoexpressthankstoRonFunkandtoalltheMSAteamatCMRE
forthehelpfuldiscussionsandinsights.Theauthorsalsowishtothankthereviewersforthevaluable
commentsandsuggestions.Entropy 2013, 15 2242
References
1. Cimino,G.;Ancieri,G.;Horn,S.;Bryan,K. SensorDataManagementtoAchieveInformation
SuperiorityinMaritimeSituationalAwareness;CMREFormalReport,NATOUnclassified;
NATO:Brussels,Belgium,2013;inpress.
2. InternationalConventionfortheSafetyofLifeatSea(SOLAS),ChapterV:SafetyofNavigation,
Regulation19,13December2002.
3. CommissionoftheEuropeanCommunities. CommonpositionadoptedbytheCouncilwitha
viewtotheadoptionofaDirectiveoftheEuropeanParliamentandoftheCouncilamending
Directive2002/59/ECestablishingaCommunityvesseltrafficmonitoringandinformationsystem,
DocumentCOM2008310final–2005/0239COD;Brussels,Belgium,11June2008;Available
online:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0310:FIN:EN:pdf
(accessedon30May2013).
4. Baldauf,M.;Benedict,K.;Motz,F.Aspectsoftechnicalreliabilityofnavigationsystemsand
humanelementincaseofcollisionavoidance.InProceedingsoftheNavigationConferenceand
Exhibition,London,UK,28–30October2008;pp.1–11.
5. Høye,G.K.;Eriksen,T.;Meland,B.J.;Narheim,B.T.Space-basedAISforglobalmaritimetraffic
monitoring. ActaAstronaut. 2008, 62,240–245.
6. Hall,D.L.;Llinas,J.Anintroductiontomultisensordatafusion. Proc.IEEE 1997, 85,6–23.
7. Roy,J.AnomalyDetectionintheMaritimeDomain.InProceedingsofSPIE:OpticsandPhotonics
inGlobalHomelandSecurityIV,Orlando,FL,USA,16March2008;Halvorson,C.S.,Lehrfeld,
D.,Saito,T.,Eds.;Volume6945.
8. Laxhammar,R.AnomalyDetectioninTrajectoryDataforSurveillanceApplications.Ph.D.Thesis,
¨ OrebroUniversity, ¨ Orebro,Sweden.2011.
9. Hansen,J.;Jacobs,G.;Hsu,L.;Dykes,J.;Dastugue,J.;Allard,R.;Barron,C.;Lalejini,D.;
Abramson,M.;Russell,S. etal.Informationdomination:DynamicallycouplingMETOCand
INTELforimprovedguidanceforpiracyinterdiction. 2011NRLReview 2011,110–119.
10. Vespe,M.;Sciotti,M.;Burro,F.;Battistello,G.;Sorge,S.Maritimemulti-sensordataassociation
basedongeographicandnavigationalknowledge.InProceedingsofIEEERadarConference
RADAR08,Rome,Italy,26-30May2008;pp.1–6.
11. Gini,F.;Rangaswamy,M. KnowledgeBasedRadarDetection,TrackingandClassification;
Wiley:Hoboken,NJ,USA,2008.
12. Hu,W.;Xiao,X.;Fu,Z.;Xie,D.;Tan,T.;Maybank,S.Asystemforlearningstatisticalmotion
patterns. IEEETrans.PatternAnal.Mach.Intell. 2006, 28,1450–1464.
13. Stauffer,C.;Grimson,W.E.L.Learningpatternsofactivityusingreal-timetracking. IEEETrans.
PatternAnal.Mach.Intell. 2000, 22,747–757.
14. Morris,B.T.;Trivedi,M.M.Asurveyofvision-basedtrajectorylearningandanalysisfor
surveillance. IEEETrans.CircuitsSyst.VideoTechnol. 2008, 18,1114–1127.
15. Morris,B.T.;Trivedi,M.M.Trajectorylearningforactivityunderstanding:Unsupervised,
multilevel,andlong-termadaptiveapproach. IEEETrans.PatternAnal.Mach.Intell. 2011,
33,2287–2301.Entropy 2013, 15 2243
16. Makris,D.;Ellis,T.Learningsemanticscenemodelsfromobservingactivityinvisualsurveillance.
IEEETrans.Syst.ManCybern.PartBCybern. 2005, 35,397–408.
17. Lane,R.O.;Copsey,K.D.Trackanomalydetectionwithrhythmoflifeandbulkactivitymodelling.
InProceedingsof15thConferenceonInformationFusion,Singapore,Singapore,9–12July 2012;
pp.24–31.
18. Seibert,M.;Rhodes,B.J.;Bomberger,N.A.;Beane,P.O.;Sroka,J.J.;Kogel,W.;Kreamer,W.;
Stauffer,C.;Kirschner,L.;Chalom,E.; etal.SeeCoastportsurveillance.InProceedingsofSPIE:
PhotonicsforPortandHarborSecurityII,Orlando,FL,USA,18–19April2006;Volume6204.
19. Willems,N.;Wetering,H.V.D.;Wijk,J.J.V.Visualizationofvesselmovements. Comput.Graph.
Forum 2009,28,959–966.
20. Riveiro,M.VisualAnalyticsforMaritimeAnomalyDetection,Ph.D.Thesis, ¨ OrebroUniversity,
¨ Orebro,Sweden.2011.
21. Kraiman,J.B.;Arouh,S.L.;Webb,M.L.Automatedanomalydetectionprocessor.InProceedings
ofSPIE:EnablingTechnologiesforSimulationScienceVI,Orlando,FL,USA,1April2001;Sisti,
A.F.,Trevisani,D.A.,Eds.;pp.128–137.
22. Bomberger,N.A.;Rhodes,B.J.;Seibert,M.;Waxman,A.M.Associativelearningofvesselmotion
patternsformaritimesituationawareness.InProceedingsof9thInternationalConferenceon
InformationFusion,Florence,Italy,10–13July2006;pp.1–8.
23. George,J.;Crassidis,J.;Singh,T.;Fosbury,A.M.Anomalydetectionusingcontext-aidedtarget
tracking. J.Adv.Inf.Fusion 2011,6,39–56.
24. Nevell,D.Anomalydetectioninwhiteshipping.InProceedingsof2ndIMAConferenceon
MathematicsinDefence,Farnborough,UK,19November2009;pp.1–7.
25. Lane,R.O.;Nevell,D.A.;Hayward,S.D.;Beaney,T.W.Maritimeanomalydetectionandthreat
assessment.InProceedingsof13thConferenceonInformationFusion,Edinburgh,UK,26–29
July2010;pp.1–8.
26. Vespe,M.;Bryan,K.;Braca,P.;Visentini,I.Unsupervisedlearningofmaritimetrafficpatterns
foranomalydetection.InProceedingsof9thIETDataFusionandTargetTrackingConference,
London,UK,16–17May2012;pp.1–5.
27. Vespe,M.;Pallotta,G.;Visentini,I.;Bryan,K.;Braca,P.Maritimeanomalydetectionbasedon
historicaltrajectorymining.InProceedingsoftheNATOPortandRegionalMaritimeSecurity
Symposium,Lerici,Italy,21–23May2012;pp.1–11.
28. Laxhammar,R.;Falkman,G.;Sviestins,E.Anomalydetectioninseatraffic:Acomparisonof
Gaussianmixturemodelandkerneldensityestimator.InProceedingsof12thConferenceon
InformationFusion,Seattle,WA,USA,6–9July2009;pp.756–763.
29. Will,J.;Claxton,C.;Peel,L.FastmaritimeanomalydetectionusingKD-treeGaussianprocesses.
InProceedings2ndIMAConferenceonMathsinDefence,Shrivenham,UK,20October2011.
30. Kowalska,K.;Peel,L.MaritimeanomalydetectionusingGaussianprocessactivelearning.
InProceedingsof15thConferenceonInformationFusion,Singapore,Singapore,9–12July2012;
pp.1164–1171.Entropy 2013, 15 2244
31. Smith,M.;Reece,S.;Roberts,S.Rezek,I.OnlinemaritimeabnormalitydetectionusingGaussian
processandextremevaluetheory.InProceedingsofIEEE12thInternationalConferenceonData
Mining(ICDM).Brussels,Belgium10–13December2012;pp.645–654.
32. Ristic,B.;LaScala,B.;Morelande,M.;Gordon,N.StatisticalanalysisofmotionpatternsinAIS
data:Anomalydetectionandmotionprediction.InProceedingsof11thConferenceonInformation
Fusion,Cologne,Germany,June30–July32008;pp.40–46.
33. Pallotta,G.;Vespe,M.;Bryan,K. TrafficRouteExtractionandAnomalyDetection(TREAD):
VesselPatternKnowledgeDiscoveryandExploitationforMaritimeSituationalAwareness;NATO
FormalReportCMRE-FR-2013-001,NATOUnclassified;NATO:Brussels,Belgium,2013.
34. TechnicalcharacteristicsforanautomaticidentificationsystemusingTDMAintheVHF
maritimemobileband,RecommendationITU-RM.1371-4.2010.Availableonline:
http://www.itu.int/rec/R-REC-M.1371/en(accessedonline30May2013).
35. Guerriero,M.;Coraluppi,S.;Carthel,C. AnalysisofAISIntermittencyandVesselCharacterization
UsingaHiddenMarkovModel;NURC-FR-2010-002,NATOUnclassified;NATO:Brussels,
Belgium,2010.
36. Performancetestprocedures,methodology,datasources,qualityofacquiredAISspacebornedata.
EuropeanCommission-DGMARE,Pasta-MareProject,TechnicalNoteTN5.2010.Availabel
online:https://webgate.ec.europa.eu/maritimeforum/system/files/6039r%20PASTA%20MARE
LXS TN-005 Performance%20Test%20procedure Issue2 0.pdf(accessedonline30May2013).
37. Ester,M.;Kriegel,H.;Sander,J.;Wimmer,M.;Xu,X.Incrementalclusteringformininginadata
warehousingenvironment.InProceedingsofthe24thInternationalConferenceonVeryLargeData
Bases,NewYork,NY,USA,24–27August1998;pp.323–333.
38. Ester,M.;Kriegel,H.;Sander,J.;Xu,X.Adensity-basedalgorithmfordiscoveringclustersinlarge
spatialdatabaseswithnoise.InProceedingsofSecondInternationalConferenceonKnowledge
DiscoveryandDataMining,Portland,OR,USA,2–4August1996;pp.226–231.
39. Categorizationandlistingofnoxiousliquidsubstancesandothersubstances,International
ConventionforthePreventionofPollutionFromShips,1973asmodifiedbytheProtocolof1978
(MARPOL73/78),AnnexII,Chapter2,Regulation6.
40. Riihijarvi,J.;Wellens,M.;Mahonen,P.Measuringcomplexityandpredictabilityinnetworkswith
multi-scaleentropyanalysis.InProceedingofIEEEconferenceINFOCOM,RiodeJaneiro,Brazil,
19–25April2009;pp.1107–1115.
41. Zhou,X.;Zhao,Z.;Li,R.;Zhou,L.;Zhang,H.Thepredictabilityofcellularnetworkstraffic.
InProceedingsoftheInternationalSymposiumonCommunicationsandInformationTechnologies
(ISCIT),GoldCoast,Queensland,Australia,2–5October2012;pp.973–978.
42. Batty,M.Spatialentropy. Geogr.Anal. 1974,6,1–31.
43. Sharif,H.;Djeraba,D.Anentropyapproachforabnormalactivitiesdetectioninvideostreams.
PatternRecogn. 2012, 45,2543–2561.
44. Rabiner,L.R.AtutorialonhiddenMarkovmodelsandselectedapplicationsinspeechrecognition.
Proc.IEEE 1989, 77,257–285.Entropy 2013, 15 2245
45. Giannotti,F.;Nanni,M.;Pinelli,F.;Pedreschi,D.;Axiak,M.Trajectorypatternmining.
InProceedingsofthe13thACMSIGKDDInternationalConferenceonKnowledgeDiscoveryand
DataMining,SanJose,CA,US,12–15August2007;pp.330–339.
46. Emrich,T.;Kriegel,H.;Mamoulis,N.;Renz,M.;Zufle,A.Queryinguncertainspatio-temporal
data.InProceedingsofthe28thIEEEInternationalConferenceonDataEngineering,Washington,
DC,US,1–5April2012;pp.354–365.
47. Runkle,P.R.;Bharadwaj,P.K.;Couchman,L.;Carin,L.HiddenMarkovmodelsformulti-aspect
targetclassification. IEEETrans.SignalProcess. 1999, 47,2035–2040.
48. Jakob,M.;Vanˇ ek,O.;Hrstka,O.;Pˇ echouˇ cek,M.Agents vs.pirates:Multi-agentsimulation
andoptimizationtofightmaritimepiracy.InProceedingsofthe11thInternationalConferenceon
AutonomousAgentsandMultiagentSystems,Valencia,Spain,4–8June2012;pp.37–44.
49. Erto,P.Genesis,propertiesandidentificationoftheinverseWeibullsurvivalmodel[inItalian].
StatisticaApplicata 1989,1,117–128.
50. Morgan,L.;Martinez,A.;Myers,L.;Bourgeois,B.Distributionfittingofaregularpointprocess.
InProceedingsoftheAmericanStatisticalAssociation2001JointStatisticalMeeting,Atlanta,GA,
US,5–9August2001.
51. Cohen,C.MaximumlikelihoodestimationintheWeibulldistributionbasedoncompleteandon
censoredsamples. Technometrics 1965,7,579–588.
c
2013bytheauthors;licenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticle
distributedunderthetermsandconditionsoftheCreativeCommonsAttributionlicense
(http://creativecommons.org/licenses/by/3.0/).