18 April 2017 1 49325 Computer-Aided Mechanical Design Lecture 04: FEM for Two-Dimensional Problems Isoparametric Elements and their Numerical Integration Dr. Zhen (Jeff) Luo School of EMMS, FEIT, UTS Office: CB11.09.132 Phone: 9514 2994; Email: [email protected] The term “Isoparametric”, which means “same parameter”, is derived from the use of the same shape functions [N] to define the shape/coordinates as are used to define the displacements of any point within the element.   x y  x y 1 1 ,   x y 2 2 ,   x y 3 3 ,   x y 4 4 ,  1 2 3 4   u v 1 1 ,  u v 2 2 ,  u v 3 3 ,  u v 3 3 ,  { } and ( , ) ?  X X  N(ξ,η)       { } and ( , ) ? d u N(ξ, η)         1: “Isoparametric”?How to map the local coordinates for any point in the square reference element to the global coordinates for the quadrilateral physical element ? For instance, considering the square reference element, the node 1 has , while in the quadrilateral physical element we have .   x y       1, 1  x x y y  1 1 ,  x y   x y 1 1 ,   x y 2 2 ,   x y 3 3 ,   x y 4 4 ,  1 2 3 4       1, 1 1, 1     1,1 1,1 1 2 4 3 Square reference element ? Quadrilateral physical element Reference: FEM Meshing: Local Coordinate System Global Coordinate System4 (1) For isoparametric finite elements: The displacement field, the strain and the stress are all to be formulated in Local Coordinate System (2) However, please note that strain, stress and strain are, originally, all defined in Global Coordinate System (3) Hence, a transformation has to be applied to mapping or project quantities between Local - Global Coordinate Systems            1 2 3 4 1 1 1 1 , 1 1 4 4 1 1 1 1 , 1 1 4 4 N N N N                       1 1 2  1 2 3 4 2 1 2 3 4 3 Shape Functions: ( , ) 3 4 4 FEM Meshing ( , ) ( , ) 0 0 0 0 ( , ) ( , ) 0 0 0 0 i i i i x y x x N x y N N N N y N y N N N N x y x y                                                              N  Shape functions: Element shapes Global Coordinate System Local Coordinate System Eq. (1): Local Coordinate System x x ( , ) ?{ }       x y  x y 1 1 ,   x y 2 2 ,   x y 3 3 ,  1 2 3 4 ( , ) x y     x y 4 4 , o o Step 1: Select type/shape of isoparametric element6 “Isoparametric” – Two identical shape functions to define both the coordinates and the displacements of any point within an element. The same shape functions, used to compute the coordinates of any point (x, y) within the element, is also used to calculate the displacements of this point within the element: Step 2: Select displacement functions     1 1 2  1 2 3 4 2 1 2 3 4 3 3 4 4 ( , ) ( , ) 0 0 0 0 ( , ) ( , ) ( , ) 0 0 0 0 i i i i u v u u N u v N N N N v N v u N N N N v u v                                                               N(ξ,η) FEM:{d} u    u d ( , ) ?{ }           1 1 2  1 2 3 FEM Mes 4 2 1 2 3 4 3 4 4 n 3 hi g ( , ) ( , ) 0 0 0 0 , ( , ) ( , ) 0 0 0 0 i i i i x y x x N x y N N N N y N y N N N N x y x y                                                               N(ξ,η) X  Ref to: Eq. (2): Eq. (1):    ( , ) ( , ) { } FEM Mesh x x          N    ( , ) ( , ) { } FEM Mesh u d          N7 Step 3: Define Strain-Displacement Relationship For 2D problems, the three strains (two normal strains; one engineering shear strain) corresponds to the three stresses. The strains are originally defined in terms of the derivatives of the displacements u and v with respect to global x and y coordinates. However, (x, y) are also the functions of . We will need to express the derivatives of the displacement in the global (x, y) coordinate system in terms of its derivatives in local coordinate system:   1 0 0 0 ( ) 0 0 0 1 0 1 1 0 , x y xy uxuy uxvy u v y x v vx y                                                                                      T {ε }     , Eq. (3) ?                  ( , ) ( , ) ( , ) ?{ } u v u v u v   x y x y   FEM ε ε ε d  ,  ,  , ?  ,8     22 12 21 11 22 12 21 11 0 0 1 0 0 det 0 0 0 0 uxu vxv u J J u J J J J v J J y y    v                                                                                Α J      22 12 21 11 1 det u J J J J uxuy  u                                                  J   22 12 21 11 1 det v J J J J vxvy  v                                                   J Then the first-order derivatives for the displacements of any point (u,v) in the element with respect to the Global Coordinates (x,y) are given as ! ?  1 1 2 4 3 1 2 1 2 4 3 2 3 1 2 4 3 3 1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u N N N N u v u u N N N N v u v N N N N v v N N N N u                                                                                                                S    4 4 v                           {d}     1 1 2  1 2 3 4 2 1 2 3 4 3 3 4 4 , , , , ( ) ( ) 0 0 0 0 ( ) ( , ) ( ) 0 0 0 0 i i i i u v u u N u v N N N N v N v u N N N N v u v                                                               N(ξ,η) FEM:{d} u    Recall Eq. (2): !Known Information given by Shape Functi (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 1 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 4 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) u u v v                                                                                              1 1 2 2  ons: 3 3 4 4 u v u v u v u v                           S FEM:{d}       31 2 4 3 1 2 4 1 (1 ) (1 ) (1 ) (1 ) 4 1 (1 ) (1 ) (1 ) (1 ) 4 NN N N N N N N                                                                         1 2 3 4 1 1 1 1 , 1 1 4 4 1 1 1 1 , 1 1 4 4 N N N N                     Substitute into [S]: ! Global Coordinate System Local Coordinate System Local Coordinate Systemwhere the matrix [B] is called the strain-displacement matrix, it is only dependent on nodal local coordinates of the element, as well as the derivatives of shape functions. The more detailed information about [B]:                , ,                    B ε T A ξ, η S ξ, η d = B d    In this case, in the numerical implementation of FEM, we can calculate the strain-displacement matrix in the local/natural system:               B B B B B           , , , , , 3 8                     1 2 3 4 3 2 3 2 3 2        3 2        22 12 3 2 21 11 21 11 22 12 0 1 ( ) 0 : 1, 2, 4 e , 3, d t i i i i i i i i i Where N N J J N N J J nodes i N N N N J J J J                                                      B J18/04/2017 12     1 1 22 12 1 1 1 21 11 1 1 1 1 21 11 22 12 ( ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , , , , N N J J N N J J N N N N J J J J                                                                    B J     2 2 22 12 2 2 2 21 11 2 2 2 2 21 11 22 12 ( ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , , , , N N J J N N J J N N N N J J J J                                                                    B J     3 3 22 12 3 3 3 21 11 3 3 3 3 21 11 22 12 ( ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , , , , N N J J N N J J N N N N J J J J                                                                    B J     4 4 22 12 4 4 4 21 11 4 4 4 4 21 11 22 12 ( ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , , , , N N J J N N J J N N N N J J J J                                                                    B JIn this case, in the numerical implementation of FEM, we can calculate the strain within the local (or natural) coordinate system:    ( , ) ?{ }    FEM ε d   1 0 0 0 ( ) 0 0 0 1 0 1 1 0 , x y xy uxuy uxvy u v y x v vx y                                                                                      T {ε }    Eq. (3):     22 12 21 11 22 12 21 11 0 0 1 0 0 det 0 0 0 0 uxu vxv u J J u J J J J v J J y y    v                                                                                   Α J    Known Information given by Shape Functi (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 1 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 4 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0 (1 ) u u v v                                                                                              1 1 2 2  ons: 3 3 4 4 u v u v u v u v                           S FEM:{d}   ! !  ,   ,  !                , ,                    B ε T A ξ,η S ξ,η d = B d   For linear elastic materials, the stress-strain relations come from the generalized Hooke’s law. Particularly, for isotropic materials, there are only two independent material properties: Young’s Modulus E and Poisson’s Ratio v. Consider a differential element in the body, the Hook’s law gives : 14 2 2 (1 ) (1 ) 2(1 ) x x y y x y xy xy xy E v v E v v E G v                                               , 2 1 0 1 0 1 0 0 1 2 x x y y xy xy v E v v v                                          σ D ε    (4) Stress-Strain Relationship                   , , , ,               ε σ D ε B D d       Hence, the stress of isotropic materials is    ( , ) ?    { } FEM σ d Eq. (4):15 Unlike the Constant-Strain-Triangular (CST) element, the strain and stress in the quadrilateral Q4 element are not constant within the element. Instead, they are functions of and consequently vary within the element. ( , )  16 (5) Derive Element Stiffness Matrix and EquationsKeep in mind that for the basic plane stress element, the total potential energy is now a function of the nodal displacement {d}, such that the partial derivative of ∏ with respect to the nodal displacement {d} is T     0 V     dV   {d}    [B] D [B] {d} f     0 e e T V e dV        k [B] D [B] {d} f  So, for element with a constant thickness h in the global x-y system, we have 17 ( , ) ( , )   e e T A     k [B ] D [B ]   x y x y hdxdy   e e T V      k [B] D [B]   dV Note: The strain energy is originally defined in Global Coordinate System18       1, 1 1, 1     1,1 1,1 1 2 4 3     k [B ] D [B ] J e T 8 8       1 1 1 1 ( , ) ( , ) ( , )         8 3 3 8    3 3  h d d    How to calculate [k] in ξ-η ( , ) ( , )   e e T A     k [B ] D [B ]   x y x y hdxdy  dxdy d d  J      Local Coordinate System: Global Coordinate System:18 April 2017 19 Multidimensional Gauss rules are obtained by successive application of 1D Gauss rules. In two dimensions, 1 1 1 1 1 1     , , , i i i j i j   i j i I y d d W y d WW y                           In two dimensions, for example, a four-node Gauss rule (a 2-by-2 rule: displacement field in x or y direction, linear distribution, 2 points will be good enough for fully representing the linear distribution) is shown in the following Figures, with i=1,2 and j=1,2 yields I y d d W W y W W y W W y W W y          1 1 1 1            , , , , ,            1 1 1 1 2 1 2 1 1 2 1 2 2 2 2 2                 1 1 2 1 1 2 2 2 Gauss point 1: , 0.5773, 0.5773 Gauss point 2: , 0.5773, 0.5773 Gauss point 3: , 0.5773,0.5773 Gauss point 4: , 0.5773,0.5773                        1 2 1.000 Weights: 1.000 W W      3. Numerical integration (1) Gauss quadrature for stiffness matrix:20   1 2 3 4 1 1 ,  2 1 ,  1 2 ,  2 2 ,  j  2 j  1 i  1 i  2   0.5773   0.5773   0.5773   0.5773 Figure: Gaussian quadrature in two dimension (4 computational points)Numerical integration for K e For an isoparametric plane element, the element stiffness can be computed by using the numerical integration (e.g. Gaussian Quadrature), stated by     k [B ] D [B ] J e T 8 8       1 1 1 1 ( , ) ( , ) ( , )         8 3 3 8    3 3  h d d    Local Coordinate System: (1) For i=1 to 4 End         1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) e T T T T hWW hW W hW W hW W                                 k [B ] D [B ] J [B ] D [B ] J [B ] D [B ] J [B ] D [B ] J   4 1 e T ( , ) ( , ) ( , ) i i i i i i i i i       hWW          k [B ] D [B ] J (2) For i=1 to 2 For j=1 to 2       8 8 1 1 8 3 1 1 3 8 1 1 1 1 2 1 8 3 2 1 3 8 2 1 2 1 1 2 8 3 1 2 3 8 1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) With respect to the Element Stiffness Matrix: ( , ) ( , ) ( , e T T T hWW hW W                                 k [B ] D [B ] J [B ] D [B ] J [B ] D [B ] J   2 1 2 2 2 8 3 2 2 3 8 2 2 2 2 ) ( , ) ( , ) ( , ) T hWW [B ] D [B ] J         hW W   2 2 1 1 e T ( , ) ( , ) ( , ) i j i j i j i j j i       hWW       k [B ] D [B ] J             End (loop j=1,2) End (loop i=1,2)23 Numerical Case: (how to calculate [K] in local coordinate?)                 1 1 2 1 1 2 2 2 Gauss point 1: , 0.5773, 0.5773 Gauss point 2: , 0.5773, 0.5773 Gauss point 3: , 0.5773,0.5773 Gauss point 4: , 0.5773,0.5773                        1 2 1.000 1.000 W W                         1 2 3 4 1 1 1 1 , 1 1 , 4 4 1 1 1 1 , 1 , , , , 1 4 4 i j i j i j i i j j i j i j i j N N N N                                     31 2 4 3 1 2 4 1 (1 ) (1 ) (1 ) (1 ) ; 4 1 (1 ) (1 ) (1 ) (1 ) ; , 4 ,i j i j j j j i i j i i N N N N N N N N N N                                                                            % Loop the 4 Gauss integration points (ξi, ηj) For i=1 to 2 For j=1 to 2 (1) Calculate Shape functions with respect to local coordinate (ξ, η) (2) Calculate first derivatives of shape functions with respect to (ξ, η)                   1 1 11 12 2 2 21 22 3 3 4 4 1 1 1 1 1 4 1 1 , 1 1 j j j j i j i i i i x y J J x y J J x y x y                                                   J (3): Calculation of the Jacobian matrix J in (ξ, η)(4): Calculation the determinant of the Jacobian matrix |J| in (ξ, η)     1 2 1 2 3 4 3 4 0 1 1 1 1 0 1 det 8 1 0 1 1 1 0 , ( , ) j j i i j i i i j i j i j i i j j j i j y y x x x x y y                                   J   J                                     B B B B B           i j i j i j i j i j , , , , ,        1 2 3 4       (5): Calculation [B] in (ξ, η) based on (2), (3) and (4)   1 1 22 12 1 1 1 21 11 1 1 1 1 21 11 22 12 ( , , , , ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , i j i j i j i j i j i j i j i j i j i j N N J J N N J J N N N N J J J J                                                                               B J   2 2 22 12 2 2 2 21 11 2 2 2 2 21 11 22 12 ( , , , , ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , i j i j i j i j i j i j i j i j i j i j N N J J N N J J N N N N J J J J                                                                               B J26 End (loop j=1,2) End (loop i=1,2) (6): Calculation [K] based on (5)         1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) e T T T T hWW hW W hWW hW W                                 k [B ] D [B ] J [B ] D [B ] J [B ] D [B ] J [B ] D [B ] J     k [B ] D [B ] J    ( , ) ( , ) ( , )       i j i j i j i j T hW W   3 3 22 12 3 3 3 21 11 3 3 3 3 21 11 22 12 ( ) , , , , , , , ( ) , 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , i j i j i j i j i j i j i j i j i j N N J J N N J J N N N N J J J J                                                                               B J   4 4 22 12 4 4 4 21 11 4 4 4 4 21 11 22 12 ( , , , , ) ( ) 0 1 ( ) ( ) ( ) 0 det ( ) ( ) ( ) ( ) , , , , , , i j i j i j i j i j i j i j i j i j i j N N J J N N J J N N N N J J J J                                                                               B J27 In Q4 element, the stresses are not constant within the quadrilateral element, because [B] is a function of , and the stress is also a function of . In general, the stresses are evaluated at the same Gauss points as used to evaluate the stiffness matrix (for 2-by-2 integration, 4 sets of stress data). To reduce the data, it is often practical to evaluate the stresses at . Element Q4 has the defect of displaying spurious shear stress when bending. In practice, shear stress in Q4 element should be calculated at the center of the element, the element stiffness can be computed at the center , which happens to be the Gauss point location of one-point quadrature rule. It is well known that the Q4 element typically generates overstiffness finite element results. So, for the Q4 element, an obvious benefit of one-point integration is that the resulting [K] is not stiffened by spurious shear strain because bending modes produce zero shear strain at the element center. , ,    0    0     ( , )  ( 0, 0) ( 0, 0) ( 0, 0)               σ = D B d BJ J Element Strain and Stress: (2) Gauss quadrature for stress calculation:28   1 2 3 4 1 1 ,  2 1 ,  1 2 ,  2 2 ,  j  2 j  1 i  1 i  2 Figure: Gaussian quadrature in two dimension (central computational point)    0, 0  